Breaking down that’s why they make land slides
Answer:
The concentration of H₃PO₄ will increase.
Explanation:
H₃PO₄(aq) + H₂O(l) ⇄ H₂PO₄⁻(aq) + H₃O⁺(aq)
According to Le Châtelier's Principle, when we apply a stress to a system at equilibrium, the system will respond in a way that tends to relieve the stress.
If we add more H₂PO₄⁻, the position of equilibrium will move to the left to get rid of the added H₂PO₄⁻.
The concentration of H₃PO₄ will increase.
Answer:
Ammonia fortis liquor is a saturated solution of ammonia in water. It is also called 880 ammonia. Its relative density is 0.880. It is stored in tightly sealed bottles in a cold place. (Sorry if I'm wrong)
Explanation:
The isotope that is more abundant, given the data is isotope Li7
<h3>Assumption</h3>
- Let Li6 be isotope A
- Let Li7 be isotope B
<h3>How to determine whiche isotope is more abundant</h3>
- Molar mass of isotope A (Li6) = 6.02 u
- Molar mass of isotope B (Li7) = 7.02 u
- Atomic mass of lithium = 6.94 u
- Abundance of A = A%
- Abundance of B = (100 - A)%
Atomic mass = [(mass of A × A%) / 100] + [(mass of B × B%) / 100]
6.94 = [(6.02 × A%) / 100] + [(7.02 × (100 - A)) / 100]
6.94 = [6.02A% / 100] + [702 - 7.02A% / 100]
6.94 = [6.02A% + 702 - 7.02A%] / 100
Cross multiply
6.02A% + 702 - 7.02A% = 6.94 × 100
6.02A% + 702 - 7.02A% = 694
Collect like terms
6.02A% - 7.02A% = 694 - 702
-A% = -8
A% = 8%
Thus,
Abundance of B = (100 - A)%
Abundance of B = (100 - 8)%
Abundance of B = 92%
SUMMARY
- Abundance of A (Li6) = 8%
- Abundance of B (Li7) = 92%
From the above, isotope Li7 is more abundant.
Learn more about isotope:
brainly.com/question/24311846
#SPJ1
Answer: C) middle 50 percent of the data
The interquartile range (IQR) spans from the first quartile Q1 to the third quartile Q3.
25% of the data is below Q1 and 75% of the data is below Q3. The gap between the two endpoints consists of 75-25 = 50 percent of the data, or half of the data.