Answer:
the magnitude of the force that the wire will experience = 1.8 N
Explanation:
The force on a current carrying wire placed in a magnetic field is :
F = Idl × B
where:
I = current flowing through the wire
dl = length of the wire
B = magnetic field
We can equally say that :

where : sin θ is the angle at which the orientation from the magnetic field to the wire occurs = 30°
Then;

Given that:
L = 20 cm = 0.2 m
I = 6 A
B = 3 T
θ = 30°
Then:
F = 3 × 6 × 0.2 sin 30°
F = 1.8 N
Therefore, the magnitude of the force that the wire will experience = 1.8 N
Answer:
NFC Near Field Communication
Explanation:
The Near Field Communication is a communication protocol, for extra short distance with a maximum of 10 centimeters, but usually used in 4 to 5 cm. Its intended to be used in contactless pay systems and in transportation card. Actually has been used to transfer multimedia from cell phones and other devices. The maximum data rate is around 424 kbit/s, with mean in 250 Kbp
Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.