The longest wavelength of radiation used to break carbon-carbon bonds is 344 nm.
<u>Explanation:</u>
The longest wavelength of radiation can also be stated as the minimum radiation frequency required to cut carbon-carbon bond should be equal to the threshold energy of the carbon-carbon bonds.
The threshold energy will be equal to the binding energy of the carbon-carbon bonds. As it is known that carbon-carbon bonds exhibit a binding energy of 348 kJ/mole, the threshold energy to break it, is determined as followed.
First, we have to convert the energy from kJ/mol to J, i.e., energy for the carbon-carbon molecules,
As,
So,
Thus, is the longest wavelength of radiation used to break carbon-carbon bonds.
Air Pressure is a force that is exerted onto your body by air molecules.
Answer:
a)54L/min
b)0.845
Explanation:
a) A x V=
where suffix 1,2,3 refers to the three pipes.
=27L/min+16L/min+11 L/min
=54L/min
b) A x V=54L/min => x v
d= 2 cm
x v = 54
v= x
-> x =27L/min => x
= 1.3cm
x = 27
= x
Next is to find the ratio of speed i.e
x / x =>
= 0.845
Answer:
E. Student 1 is correct, because as θ is increased, h is the same.
Explanation:
Here we have the object of a certain mass falling under gravity so the force acting on the it will depend on mass of the object and the acceleration due to gravity.
Mathematically:
As we know that the work done is evaluated as the force applied on a body and the displacement of the body in the direction of the force.
And for work we have:
where:
displacement of the object
angle between the force and displacement vectors
Given that the height of the object is same in each trail of falling object under the gravity be it a free-fall or the incline plane.
- In case of free-fall the angle between the force is and the displacement is zero.
- In case when the body moves along the inclined plane the force applied by the gravity is same because it depends upon the mass of the object. And the net displacement in the direction of the gravitational force is the height of the object which is constant in both the cases.
So, the work done by the gravitational force is same in the two cases.