Answer:
it selects what molecules to engulf, whereas pinocytosis or phagocytosis engulf anything in the vicinity
Trust!
Answer:
19 N
Explanation:
From the question given above, the following data were obtained:
Pressure (P) = 1.9 kPa
Length (L) = 10 cm
Force (F) =?
Next, we shall convert 1.9 KPa to N/m². This can be obtained as follow:
1 KPa = 1000 N/m²
Therefore,
1.9 KPa = 1.9 KPa × 1000 N/m² / 1 KPa
1.9 KPa = 1900 N/m²
Thus, 1.9 KPa is equivalent to 1900 N/m².
Next, we shall convert 10 cm to m. This can be obtained as follow:
100 cm = 1 m
Therefore,
10 cm = 10 cm × 1 m / 100 cm
10 cm = 0.1 m
Thus, 10 cm is equivalent to 0.1 m
Next, we shall determine the area of the square. This can be obtained as follow:
Length (L) = 0.1 m
Area of square (A) =?
A = L²
A = 0.1²
A = 0.01 m²
Thus, the area of the square is 0.01 m².
Finally, we shall determine the force that must be exerted on the sensor in order for it to turn red. This can be obtained as follow:
Pressure (P) = 1900 N/m²
Area (A) = 0.01 m²
Force (F) =?
P = F/A
1900 = F / 0.01
Cross multiply
F = 1900 × 0.01
F = 19 N
Therefore, a force of 19 N must be exerted on the sensor in order for it to turn red.
Based on this electric field diagram, the statement which best compares the charge of A with B is "A is negatively charged and B is positively charged. The charge on A is greater than that on B".
<u>Answer:</u> Option A
<u>Explanation:</u>
The charge is quantized represented as elementary charge, about 1.602×10−19 coulombs. Their are two kinds of electric charging: positive and negative (usually transported, separately, by protons and electrons). Like charges repel each other, while attraction occurs among unlike charges. An entity without net charge is considered neutral. If a piece of matter comprises more electrons than protons, it has a negative charge, when there are fewer, it'll have a positive charge and when there are equal amounts, this will be neutral.
The branch of physics that deals with the study of force energy and motion is classic mechanics
All of the Noble Gases, which are on the right side of the periodic table, have a full outer energy level. The elements that are Noble Gases are the following: <span>Neon Argon Krypton Xenon Radon Ununoctium.
Hope this helps.</span>