Chemotherapy is when radiation is used to kill cancer cells while sparing healthy tissue cells, also doctors sometimes inject patients with a nuclear tracer to show problematic areas that need to be checked out, and Nuclear power plants use nuclear energy to create a large amount of energy from just a small amount of Uranium. These are just some of the ways nuclear radiation is used to help us.
This uses the concept of freezing point depression. When faced with this issue, we use the following equation:
ΔT = i·Kf·m
which translates in english to:
Change in freezing point = vant hoff factor * molal freezing point depression constant * molality of solution
Because the freezing point depression is a colligative property, it does not depend on the identity of the molecules, just the number of them.
Now, we know that molality will be constant, and Kf will be constant, so our only unknown is "i", or the van't hoff factor.
The van't hoff factor is the number of atoms that dissociate from each individual molecule. The higher the van't hoff factor, the more depressed the freezing point will be.
NaCl will dissociate into Na+ and Cl-, so it has i = 2
CaCl2 will dissociate into Ca2+ and 2 Cl-, so it has i = 3
AlBr3 will dissociate into Al3+ and 3 Br-, so it has i = 4
Therefore, AlBr3 will lower the freezing point of water the most.
Answer:
they are molecules with normal bonds rather than partial bonds and can occasionally be isolated.
Explanation:
In chemistry, reaction intermediates are species that are formed from reactants and are subsequently being transformed into products as the reaction progresses. In other words, reaction intermediates are species that do not appear in a balanced reaction equation but occur somewhere along the reaction mechanism of a non-elementary reaction. They are usually short lived species that possess a high amount of energy. They may or may not be isolated.
They are often molecular species with normal bonds unlike activated complexes that are sometimes hypervalent species.