1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnoma [55]
3 years ago
9

What should always be done before beginning any diagnosis?

Engineering
1 answer:
vladimir2022 [97]3 years ago
4 0

Answer:

c

Explanation:

if someone is wrong that they can help with

You might be interested in
More discussion about seriesConnect(Ohm) function In your main(), first, construct the first circuit object, called ckt1, using
STALIN [3.7K]

Answer:

resistor.h

//circuit class template

#ifndef TEST_H

#define TEST_H

#include<iostream>

#include<string>

#include<vector>

#include<cstdlib>

#include<ctime>

#include<cmath>

using namespace std;

//Node for a resistor

struct node {

  string name;

  double resistance;

  double voltage_across;

  double power_across;

};

//Create a class Ohms

class Ohms {

//Attributes of class

private:

  vector<node> resistors;

  double voltage;

  double current;

//Member functions

public:

  //Default constructor

  Ohms();

  //Parameterized constructor

  Ohms(double);

  //Mutator for volatage

  void setVoltage(double);

  //Set a resistance

  bool setOneResistance(string, double);

  //Accessor for voltage

  double getVoltage();

  //Accessor for current

  double getCurrent();

  //Accessor for a resistor

  vector<node> getNode();

  //Sum of resistance

  double sumResist();

  //Calculate current

  bool calcCurrent();

  //Calculate voltage across

  bool calcVoltageAcross();

  //Calculate power across

  bool calcPowerAcross();

  //Calculate total power

  double calcTotalPower();

  //Display total

  void displayTotal();

  //Series connect check

  bool seriesConnect(Ohms);

  //Series connect check

  bool seriesConnect(vector<Ohms>&);

  //Overload operator

  bool operator<(Ohms);

};

#endif // !TEST_H

resistor.cpp

//Implementation of resistor.h

#include "resistor.h"

//Default constructor,set voltage 0

Ohms::Ohms() {

  voltage = 0;

}

//Parameterized constructor, set voltage as passed voltage

Ohms::Ohms(double volt) {

  voltage = volt;

}

//Mutator for volatage,set voltage as passed voltage

void Ohms::setVoltage(double volt) {

  voltage = volt;

}

//Set a resistance

bool Ohms::setOneResistance(string name, double resistance) {

  if (resistance <= 0){

      return false;

  }

  node n;

  n.name = name;

  n.resistance = resistance;

  resistors.push_back(n);

  return true;

}

//Accessor for voltage

double Ohms::getVoltage() {

  return voltage;

}

//Accessor for current

double Ohms::getCurrent() {

  return current;

}

//Accessor for a resistor

vector<node> Ohms::getNode() {

  return resistors;

}

//Sum of resistance

double Ohms::sumResist() {

  double total = 0;

  for (int i = 0; i < resistors.size(); i++) {

      total += resistors[i].resistance;

  }

  return total;

}

//Calculate current

bool Ohms::calcCurrent() {

  if (voltage <= 0 || resistors.size() == 0) {

      return false;

  }

  current = voltage / sumResist();

  return true;

}

//Calculate voltage across

bool Ohms::calcVoltageAcross() {

  if (voltage <= 0 || resistors.size() == 0) {

      return false;

  }

  double voltAcross = 0;

  for (int i = 0; i < resistors.size(); i++) {

      voltAcross += resistors[i].voltage_across;

  }

  return true;

}

//Calculate power across

bool Ohms::calcPowerAcross() {

  if (voltage <= 0 || resistors.size() == 0) {

      return false;

  }

  double powerAcross = 0;

  for (int i = 0; i < resistors.size(); i++) {

      powerAcross += resistors[i].power_across;

  }

  return true;

}

//Calculate total power

double Ohms::calcTotalPower() {

  calcCurrent();

  return voltage * current;

}

//Display total

void Ohms::displayTotal() {

  for (int i = 0; i < resistors.size(); i++) {

      cout << "ResistorName: " << resistors[i].name << ", Resistance: " << resistors[i].resistance

          << ", Voltage_Across: " << resistors[i].voltage_across << ", Power_Across: " << resistors[i].power_across << endl;

  }

}

//Series connect check

bool Ohms::seriesConnect(Ohms ohms) {

  if (ohms.getNode().size() == 0) {

      return false;

  }

  vector<node> temp = ohms.getNode();

  for (int i = 0; i < temp.size(); i++) {

      this->resistors.push_back(temp[i]);

  }

  return true;

}

//Series connect check

bool Ohms::seriesConnect(vector<Ohms>&ohms) {

  if (ohms.size() == 0) {

      return false;

  }

  for (int i = 0; i < ohms.size(); i++) {

      this->seriesConnect(ohms[i]);

  }

  return true;

}

//Overload operator

bool Ohms::operator<(Ohms ohms) {

  if (ohms.getNode().size() == 0) {

      return false;

  }

  if (this->sumResist() < ohms.sumResist()) {

      return true;

  }

  return false;

}

main.cpp

#include "resistor.h"

int main()

{

   //Set circuit voltage

  Ohms ckt1(100);

  //Loop to set resistors in circuit

  int i = 0;

  string name;

  double resistance;

  while (i < 3) {

      cout << "Enter resistor name: ";

      cin >> name;

      cout << "Enter resistance of circuit: ";

      cin >> resistance;

      //Set one resistance

      ckt1.setOneResistance(name, resistance);

      cin.ignore();

      i++;

  }

  //calculate totalpower and power consumption

  cout << "Total power consumption = " << ckt1.calcTotalPower() << endl;

  return 0;

}

Output

Enter resistor name: R1

Enter resistance of circuit: 2.5

Enter resistor name: R2

Enter resistance of circuit: 1.6

Enter resistor name: R3

Enter resistance of circuit: 1.2

Total power consumption = 1886.79

Explanation:

Note

Please add all member function details.Its difficult to figure out what each function meant to be.

8 0
3 years ago
How are the particles moving and and arranged in a gas?
alexandr402 [8]

Answer:

The particles in gas do not have any particular arrangement and there are very, very weak forces between them. So, the particles in a gas can easily move around and fill the shape of the container they are in, meaning they have no fixed shape.

7 0
3 years ago
A counter-flow double-piped heat exchange is to heat water from 20oC to 80oC at a rate of 1.2 kg/s. The heating is to be accompl
lawyer [7]

Answer:

110 m or 11,000 cm

Explanation:

  • let mass flow rate for cold and hot fluid = M<em>c</em> and M<em>h</em> respectively
  • let specific heat for cold and hot fluid = C<em>pc</em> and C<em>ph </em>respectively
  • let heat capacity rate for cold and hot fluid = C<em>c</em> and C<em>h </em>respectively

M<em>c</em> = 1.2 kg/s and M<em>h = </em>2 kg/s

C<em>pc</em> = 4.18 kj/kg °c and C<em>ph</em> = 4.31 kj/kg °c

<u>Using effectiveness-NUT method</u>

  1. <em>First, we need to determine heat capacity rate for cold and hot fluid, and determine the dimensionless heat capacity rate</em>

C<em>c</em> = M<em>c</em> × C<em>pc</em> = 1.2 kg/s  × 4.18 kj/kg °c = 5.016 kW/°c

C<em>h = </em>M<em>h</em> × C<em>ph </em>= 2 kg/s  × 4.31 kj/kg °c = 8.62 kW/°c

From the result above cold fluid heat capacity rate is smaller

Dimensionless heat capacity rate, C = minimum capacity/maximum capacity

C= C<em>min</em>/C<em>max</em>

C = 5.016/8.62 = 0.582

          .<em>2 Second, we determine the maximum heat transfer rate, Qmax</em>

Q<em>max</em> = C<em>min </em>(Inlet Temp. of hot fluid - Inlet Temp. of cold fluid)

Q<em>max</em> = (5.016 kW/°c)(160 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(140) °c = 702.24 kW

          .<em>3 Third, we determine the actual heat transfer rate, Q</em>

Q = C<em>min (</em>outlet Temp. of cold fluid - inlet Temp. of cold fluid)

Q = (5.016 kW/°c)(80 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(60) °c = 303.66 kW

            .<em>4 Fourth, we determine Effectiveness of the heat exchanger, </em>ε

ε<em> </em>= Q/Qmax

ε <em>= </em>303.66 kW/702.24 kW

ε = 0.432

           .<em>5 Fifth, using appropriate  effective relation for double pipe counter flow to determine NTU for the heat exchanger</em>

NTU = \\ \frac{1}{C-1} ln(\frac{ε-1}{εc -1} )

NTU = \frac{1}{0.582-1} ln(\frac{0.432 -1}{0.432 X 0.582   -1} )

NTU = 0.661

          <em>.6 sixth, we determine Heat Exchanger surface area, As</em>

From the question, the overall heat transfer coefficient U = 640 W/m²

As = \frac{NTU C{min} }{U}

As = \frac{0.661 x 5016 W. °c }{640 W/m²}

As = 5.18 m²

            <em>.7 Finally, we determine the length of the heat exchanger, L</em>

L = \frac{As}{\pi D}

L = \frac{5.18 m² }{\pi (0.015 m)}

L= 109.91 m

L ≅ 110 m = 11,000 cm

3 0
3 years ago
There are 20 forging presses in the forge shop of a small company. The shop produces batches of forgings requiring a setup time
Aleksandr-060686 [28]

Answer:

Considering the guidelines of this exercise.

The pieces produced per month are 504 000

The productivity ratio is 75%

Explanation:

To understand this answer we need to analyze the problem. First of all, we can only produce 2 batches of production by the press because we require 3 hours to set it up. So if we rest those 6 hours from the 8 of the shift we get 6, leaving 2 for an incomplete bath. So multiplying 2 batches per day of production by press we obtain 40 batches per day. So, considering we work in this factory for 21 days per month well that makes 40 x 21  making 840 then we multiply the batches for the pieces 840 x 600 obtaining 504000 pieces produced per month. To obtain the productivity ratio we need to divide the standard labor hours meaning 6 by the amount of time worked meaning 8. Obtaining 75% efficiency.

4 0
3 years ago
A thick casting with a thermal diffusivity of 5 x 10-6 m2/s is initially at a uniform temperature of 150oC. One surface of the c
fredd [130]

Answer:

T_o = 141.81 ^0C

Explanation:

Given that;

Thermal diffusivity \alpha = 5 \times 10 ^{-6} m^2/s

Thermal conductivity k = 20 \ W/m.K

Heat transfer coefficient h = ( we are to assume the imposed surface temperature ) = 20 W/m².K

Initial temperature = 150 ° C = (150+273) K = 423 K

Then coolant temperature with which the casting is exposed to = 20° C = (20+273)K = 293 K

Time = 40 seconds

Length = 20mm = 0.02 m

The objective is to determine the  temperature at the surface  at a depth of 20 mm after 40 seconds.

Bi = \dfrac{hL}{k}

Bi = \dfrac{20*0.02}{20}

Bi == 0.02

\tau = \dfrac{\alpha t}{L^2}

\tau=  \dfrac{5*10^{-6 }* 40}{0.020^2}

\tau = 0.5

For a wall at 0.2 Bi

A_1 = 1.0311

\lambda _1 = 0.4328

Therefore;

\dfrac{T_o - T_{\infty}}{T_i - T_{\infty}}= A_1 e ^{-( \lambda_1^2 \ \tau)

\dfrac{T_o - 293 }{423 - 293}= 1.0311 \times e ^{-( 0.438^2 \times 0.5 )

\dfrac{T_o - 293 }{423 - 293}= 1.0311 \times e ^{-( 0.0959 )

\dfrac{T_o - 293 }{130}= 1.0311 \times 0.9085

\dfrac{T_o - 293 }{130}= 0.937

T_o - 293= 0.937 \times 130

T_o - 293= 121.81

T_o = 121.81+ 293

T_o = 414.81 \ K

T_o = (414.81 - 273)^0C

T_o = 141.81 ^0C

4 0
4 years ago
Other questions:
  • Which of the following statements is true? Entropy has the unit of (A) Heat (B) Work (C) Energy (D) Heat capacity (E) Temperatur
    13·1 answer
  • Could I get some help please!.
    5·2 answers
  • Steam enters a turbine operating at steady state with a mass flow of 10 kg/s, a specific enthalpy of 3100 kJ/kg, and a velocity
    6·1 answer
  • What did the romans adopt from the Greek representation of the human art form
    15·1 answer
  • Write a function called pyramid(height) that acceptsa parameter ""height"". It then prints a pyramid of that height
    10·1 answer
  • Where is a machinist most likely to work?
    14·2 answers
  • Which of these parts of a cell phone is least likely to be found on the phone's circult board?
    5·1 answer
  • Compute the atomic density (the number of atoms per cm3 rather than mass density g/cm3) for a perfect crystal of silicon at room
    14·1 answer
  • 1. (15) A truck scale is made of a platform and four compression force sensors, one at each corner of the platform. The sensor i
    12·1 answer
  • Define waves as it applies to electromagnetic fields
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!