The Newton’s law Nikolas would use to come up with this idea is the <span>Third law that states:
</span><span>When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.
</span>
So, in this case, let's name the first Body
A which is the skateboard and the second body
B which is <span>the compressed carbon dioxide in a fire extinguisher. Then, as shown in the figure below, according to the Third law:
</span>

<span>
</span>
Answer:
<h3>14.97m/s</h3>
Explanation:
Given
Initial velocity of the car u = 8m/s
Distance travelled by the rider S = 40m
Acceleration a = 2m/s²
Required
rider's velocity after the acceleration v
Using the equation of motion
v² = u²+2as
v² = 8²+2(2)(40)
v² = 64+160
v² = 224
v = √224
v = 14.97m/s
Hence the rider's velocity after the acceleration is 14.97m/s
Answer:
-4.0 N
Explanation:
Since the force of friction is the only force acting on the box, according to Newton's second law its magnitude must be equal to the product between mass (m) and acceleration (a):
(1)
We can find the mass of the box from its weight: in fact, since the weight is W = 50.0 N, its mass will be

And we can fidn the acceleration by using the formula:

where
v = 0 is the final velocity
u = 1.75 m/s is the initial velocity
t = 2.25 s is the time the box needs to stop
Substituting, we find

(the acceleration is negative since it is opposite to the motion, so it is a deceleration)
Therefore, substituting into eq.(1) we find the force of friction:

Where the negative sign means the direction of the force is opposite to the motion of the box.
A beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies. Frequency beat is equal to,

The reference frequency in our case would be 392Hz, and since there is the possibility of the upper and lower range for the amount of beats per second that the two possible frequencies are heard would be


Therefore the two possible frequencies the piano wire is vibrating at, would be 396Hz and 388Hz