Ammonia synthesis can be done by Haber process. N₂ gas and H₂ gas are used as the reactants. <span>The balanced reaction equation is
</span>N₂(g) + 3H₂(g) ⇄ 2NH₃(g) + energy
This is a reversible process and the conditions as follows,
1. Pressure should be 150 - 200 atm
2. Temperature is between 450 - 500 °C
3. Catalyst is iron
1. 5 ethyl, 2 methyl octane
2. 1 ethyl, 2 methyl cyclopentane
3. 3,3,5,5- tetrafluoro heptane
4. 3,4-dimethyl hexene
5. 3,4-dimethyl cyclobutene
6. 3,5 diisopropyl cyclohexene
7. 3,3,4 trimethyl pentyne
8. 2,6 dibromo phenol
keep in mind that between 4-7, there could be #1 in front of the main name. for example with #4: 3,4-dimethyl-1- hexene. this honestly depends on the professor how he/she likes it. It is not necessary because if the number is not specified, it is assumed is #1
The red colour is the limiting reactant.
Red-blue colour ball and two white balls attached together are reactants.
Red-blue colour ball and two white and one red colour ball attached to each other are products.
<h3>What is a limiting reagent?</h3>
The reactant that is entirely used up in a reaction is called a limiting reagent.
A reactant is a substance that is present at the start of a chemical reaction. The substance(s) to the right of the arrow are called products.
A product is a substance that is present at the end of a chemical reaction.
Hence,
The red colour is the limiting reactant.
Red-blue colour ball and two white balls attached together are reactants.
Red-blue colour ball and two white and one red colour ball attached to each other are products.
Learn more about limiting reagents here:
brainly.com/question/26905271
#SPJ1
Answer:
Increased use of resources
Additional waste produced
More construction
Cutting down trees
A. Chloroplasts
B. The cell wall and the vacuole
C. Vacuoles
D. The mitochondrion