Explanation:
A=b+d that is the way to rewrite the equation
14m/s
Explanation:
Given parameters:
Height of the ball = 10m
Unknown:
Velocity of fall or final velocity = ?
Solution:
We are going to use the appropriate equation of motion to solve this problem.
The object is falling with respect to gravity.
V² = U² + 2gH
where V is the final velocity
U is the initial velocity
g is the acceleration due to gravity 9.8m/s²
H is the height of fall
The initial velocity here is zero and
V² = 2 x 9.8 x 10 = 196
V = 14m/s
learn more:
Motion problems brainly.com/question/5248528
#learnwithBrainly
Answer: The end point of a spring oscillates with a period of 2.0 s when a block with mass m is attached to it. When this mass is increased by 2.0 kg, the period is found to be 3.0 s. Then the mass m is 0.625kg.
Explanation: To find the answer, we need to know more about the simple harmonic motion.
<h3>
What is simple harmonic motion?</h3>
- A particle is said to execute SHM, if it moves to and fro about the mean position under the action of restoring force.
- We have the equation of time period of a SHM as,

- Where, m is the mass of the body and k is the spring constant.
<h3>How to solve the problem?</h3>

- We have to find the value of m,


Thus, we can conclude that, the mass m will be 0.625kg.
Learn more about simple harmonic motion here:
brainly.com/question/28045110
#SPJ4
Answer:
c. vf is greator than v2, but less than v1
Explanation:
The principle of conservation of linear momentum states that when two or more bodies act upon one another, their total momentum remains constant.
In a system of colliding bodies the total momentum of the system just before the collision is the same as the total momentum just after the collision.
Collisions in which the kinetic energy is conserved are called elastic collision.
Collisions in which the kinetic energy is not conserved are called inelastic collisions. If the two objects stick together after the collision and move with a common velocity, the collision is said to be perfectly inelastic.
<em>The above scenario is a perfectly inelastic collision. The initial velocity of particle 1 was greater than particle 2 before collision. After collision, its velocity will reduce to a final velocity vf as it transfers some of its kinetic energy to particle 2; whereas, the velocity of particle 2 will increase to a final velocity vf as it absorbs some of the kinetic energy of particle 1.</em>
Therefore,
a. vf = v2 is wrong because vf is greater than v2
b. vf is less than v2 is wrong because vf is greater than v2
c. vf is greater than v2, but less than v1 is correct.
d. vf = v1 is wrong because vf is less than v1