Answer:
86.14 meters.
Explanation:
Step one:
Given data
velocity of car = 26 m/s
the coefficient of static friction between the tires and the road
µ = 0.4 (kinetic)
Let us take g = 9.81 m/s^2
Required
The distance x = distance in m
We know that

W = F*x (Work is force times distance)
Step two:
Conservation of energy gives
KE = W
Substituting gives

Solving for distance (x) gives

Simplifying

Substitute:



Therefore, the minimum braking distance is 86.14 meters.
Through emotion, facial expressions, body language, etc...
hope this helps
Since the basketball and the tennis ball both travel to the same direction relative to the ground, the velocity of the basketball relative to the tennis ball is therefore the difference of their velocities.
0.5 m/s - 0.25 m/s = 0.25 m/s
Thus, the basketball travel for 0.25 m/s relative to the tennis ball.
So you would divide 1530 by 8 and that’s how you’d get your answer, so it should be (blank)m
Answer:
The mass of the mud is 3040000 kg.
Explanation:
Given that,
length = 2.5 km
Width = 0.80 km
Height = 2.0 m
Length of valley = 0.40 km
Width of valley = 0.40 km
Density = 1900 Kg/m³
Area = 4.0 m²
We need to calculate the mass of the mud
Using formula of density


Where, V = volume of mud
= density of mud
Put the value into the formula


Hence, The mass of the mud is 3040000 kg.