Answer:
The block's mass should be 
Explanation:
Given:
Cart with mass 
From the conservation of energy before mass is added,

Where
amplitude of spring mass system,
spring constant

Now new mass
is added to the system,


Here, given in question frequency is reduced to half so we can write,

Where
frequency of system before mass is added,
frequency of system after mass is added.




Therefore, the block's mass should be 
If the +12V is on one side of the 2.5 ohm R then.............
V = (2.5/8) x 12 otherwise......
V = (5.5/8) x 12
Answer:
The electric potential in volts is 1.618 x 10⁻¹⁷ V
Explanation:
The electric potential, in volts, at point P, can be calculated as follow;
Electric potential is the work done in moving a unit positive charge from infinity to a particular point in the electric field.
Thus, the work done in this process in moving the charge to point p is 101eV.
Convert this Volts = 101 × 1.602 x 10⁻¹⁹ V
= 1.618 x 10⁻¹⁷ V
Therefore, the electric potential in volts is 1.618 x 10⁻¹⁷ V
Answer:
4units
Explanation:
To calculate the total distance the beam will travel along this path, you will use the formula for calculating the distance between two coordinates expressed as;
D = √(x2-x1)²+(y2-y1)²
Given the coordinate points
(3,5) and (7,5)
Substitute
D = √(7-3)²+(5-5)²
D = √(7-3)²+0²
D = √4²
D = √16
D = 4
Hence the total distance the beam will travel along this path is 4units
Answer:
The elastic potential energy PE=143.47kJ
Explanation:
This problem bothers on the potential energy stored in a material.
Given data
Mass of the bungee jumper
m= 75kg
Height of jump down the cliff h=195m
We know that the elastic potential energy stored is same as the potential energy of the bungee jumper
PE= 1/2kx²= mgh
Assuming g is 9.81m/s²
PE= 75*9.81*195
PE= 143471.25J
PE=143.47kJ
What is potential energy?
Potential energy is the energy possessed by a body by virtue of it position.