Answer:
The maximum height reached by the ball is 16.35 m.
Explanation:
Given;
initial velocity of the ball, u = 17.9 m/s
the final velocity of the ball at the maximum height, v = 0
The maximum height reached by the ball is given by;
v² = u² + 2gh
During upward motion, gravity is negative
v² = u² + 2(-g)h
v² = u² - 2gh
0 = u² - 2gh
2gh = u²
h = u² / 2g
h = (17.9)² / (2 x 9.8)
h = 16.35 m
Ttherefore, the maximum height reached by the ball is 16.35 m.
Answer:
It would be hard to test scientifically since it's subjective and can only be proven true if you conducted some experimentations and observations.
Hey user
The energy E in joules (J) is equal to the voltage V in volts (V), times the electrical charge Q in coulombs (C):
E(J) = V(V) ×<span> Q</span>(C)
So
joule = volt × coulomb
or
J = V × C
Example
What is the energy in joules that is consumed in an electrical circuit with voltage supply of 15V and charge flow of 4 coulombs?
E = 15V × 4C = 60J
I'm not completely sure, but I think it's 3.4 newtons. I hope you get it correct.
Answer:
78.4 m
Explanation:
To obtain the height of the cliff;
We can use the Relation to obtain the final velocity, v
v = u + at
a = acceleration due to gravity = 9.8m/s²
v = 0 + (9.8*4)
v = 0 + 39.2
v = 39.2 m/s
To obtain the Height, S
v² = u² + 2aS
39.2^2 = 0 + 2(9.8)S
39.2^2 = 0 + 19.6S
1536.64 = 19.6S
S = 1536.64 / 19.6
S = 78.4 m