Bromine has the following electron configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5. categorize the electrons in each. Answer for video: The video player is loaded.
On the periodic chart, row 5, column 7, is where you can find a chemical element that was identified in 1811. It has a proton count of 53 and an atomic mass of 126.9. Iodine's atom, then, contains 53 electrons in the following configuration: 1s2, 2s2, 2p6, 3s2, 3d10, 4p6, 5s2, 4d10, 5p5 (Kr 4d10 5s2 5p5). Cu Z = 29 has an electrical arrangement of 1s2 2s2 2p6 3s2 3p6 3d10 4s1. Copper (Co) has the following electron configuration: 1s2 2s2 2p6 3s3 3p6 4s2 3d7. If a chemist were to refer to Copper by its subshell, they would abbreviate this notation to "3d7."
To learn more about electrons please click on below link
brainly.com/question/1255220
#SPJ4
<span>B)<span>C2H6O<span>2
</span></span></span>
First, convert each percentage to grams: 38.7g, 9.70g, and 51.6g.
Next, calculate the number of moles of each element, based on the number of grams given.
C = 3.23 mol
H = 8.91 mol
O = 3.23 mol
Set up the ratio of moles of each element:
C3.34H9.70O3.23. Convert the decimals to whole numbers by dividing by the smallest subscript, 3.23.
The empirical formula is CH3O.
Now, compute the formula mass, which is 31. Finally, divide the molecular mass by the formula mass, 62/31 = 2. Multiple the subscripts by 2 to get the molecular formula.
Answer:
i think it will increase the rate of chemical reaction as pressure is directly proportional to the reactivity of gas.
The correct answer is a the sun
<span>The ability of an atom to attract the shared electrons in a covalent bond is its:</span>electronegativity.