<u>Answer:</u> The
for the reaction is 51.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The chemical equation for the reaction of carbon and water follows:

The intermediate balanced chemical reaction are:
(1)
( × 2)
(2)
( × 2)
(3)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[2\times \Delta H_1]+[2\times \Delta H_2]+[1\times (-\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B2%5Ctimes%20%5CDelta%20H_1%5D%2B%5B2%5Ctimes%20%5CDelta%20H_2%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(2\times (-393.7))+(2\times (-285.9))+(1\times -(-1411))]=51.8kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-393.7%29%29%2B%282%5Ctimes%20%28-285.9%29%29%2B%281%5Ctimes%20-%28-1411%29%29%5D%3D51.8kJ)
Hence, the
for the reaction is 51.8 kJ.
Answer:
a. 113 min
Explanation:
Considering the equilibrium:-
2N₂O₅ ⇔ 4NO₂ + O₂
At t = 0 125 kPa
At t = teq 125 - 2x 4x x
Thus, total pressure = 125 - 2x + 4x + x = 125 - 3x
125 - 3x = 176 kPa
x = 17 kPa
Remaining pressure of N₂O₅ = 125 - 2*17 kPa = 91 kPa
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k =
min⁻¹
Initial concentration
= 125 kPa
Final concentration
= 91 kPa
Time = ?
Applying in the above equation, we get that:-

Answer:
<h3>2Al+ Fe2O3 gives 2Fe + Al2O3. The given reaction is a redox reaction. As oxidation and reduction are taking place simultaneously.</h3>
Explanation:
like this...Identify oxidation and reduction with their agents:
<h3>•2Al+ Fe2O3 →2Fe + Al2O3</h3>
<h3>•Fe2O3 is reduced to Fe whereas Al is oxidized to Al2O3</h3>
<h3>In the above reaction:</h3>
<h3>Oxidizing agent:Fe2O3</h3>
<h3>Reducing agent:Al</h3>
I hope it's help you (◠‿・)—☆
While the material retains its chemical makeup, the physical property may be examined. The given statement is true.
The matter can undergo variations in physical or chemical properties. The physical changes of a matter occur when the matter undergoes changes in its physical properties like changes in the state of matter, weight, color, etc.
But the chemical composition of matter will remain constant if it undergoes a physical change. Whereas in chemical change, the matter undergoes a change in the composition of the substance but there will be no change in the physical properties.
Hence, The assertion is correct in that physical properties can be seen while the substance's chemical makeup stays constant.
To learn more about physical and chemical change, visit: brainly.com/question/21509240
#SPJ4
Answer:The Earth's mantle is made up of semisolid rocks. ... The core consists of extremely hot metal layers instead of rock. Iron and nickel make up the outer section of the core, while the interior is almost entirely iron. The inner core is almost totally solid and shaped like a ball.
Explanation: