Answer:
4 m/
Explanation:
From Equilibrium of forces, The Tension in string is cancelled by the Weight (product of mass and acceleration due to gravity) of the body acting downwards.
The Net force = Mass * Acceleration.
Since Net Force = 20 Newton, Mass = 5kg, therefore;
20 = 5kg * acceleration. Dividing the RHS and LHS of the equation by 5, we have;
Acceleration =
which gives 4.
Note: RHS means Right Hand Side.
LHS means Left Hand Side.
Answer:
(a) v = 5.42m/s
(b) vo = 4.64m/s
(c) a = 2874.28m/s^2
(d) Δy = 5.11*10^-3m
Explanation:
(a) The velocity of the ball before it hits the floor is given by:
(1)
g: gravitational acceleration = 9.8m/s^2
h: height where the ball falls down = 1.50m

The speed of the ball is 5.42m/s
(b) To calculate the velocity of the ball, after it leaves the floor, you use the information of the maximum height reached by the ball after it leaves the floor.
You use the following formula:
(2)
vo: velocity of the ball where it starts its motion upward
You solve for vo and replace the values of the parameters:

The velocity of the ball is 4.64m/s
(c) The acceleration is given by:


The acceleration of the ball is 2874.28/s^2
(d) The compression of the ball is:

THe compression of the ball when it strikes the floor is 5.11*10^-3m
Answer:
The diagram assigned B
explanation:
Check the direction of the two vectors, their resultant must be in the same direction.
Answer:
v= 1495.04 m/s
Explanation:
The formula for velocity of sound is given by ;
v= fλ --------where
v= velocity of sound
f= frequency of turning fork
λ = wavelength
However,
Δ L = 1/2 λ ------where Δ L is spacing between resonances.
1.46 = 1/2 λ
1.46 * 2 = λ
2.92 m = λ
v= fλ
v= 512 * 2.92
v= 1495.04 m/s