With constant angular acceleration , the disk achieves an angular velocity at time according to
and angular displacement according to
a. So after 1.00 s, having rotated 21.0 rad, it must have undergone an acceleration of
b. Under constant acceleration, the average angular velocity is equivalent to
where and are the final and initial angular velocities, respectively. Then
c. After 1.00 s, the disk has instantaneous angular velocity
d. During the next 1.00 s, the disk will start moving with the angular velocity equal to the one found in part (c). Ignoring the 21.0 rad it had rotated in the first 1.00 s interval, the disk will rotate by angle according to
which would be equal to
Answer:
The time it takes the proton to return to the horizontal plane is 7.83 X10⁻⁷ s
Explanation:
From Newton's second law, F = mg and also from coulomb's law F= Eq
Dividing both equations by mass;
F/m = Eq/m = mg/m, then
g = Eq/m --------equation 1
Again, in a projectile motion, the time of flight (T) is given as
T = (2usinθ/g) ---------equation 2
Substitute in the value of g into equation 2
Charge of proton = 1.6 X 10⁻¹⁹ C
Mass of proton = 1.67 X 10⁻²⁷ kg
E is given as 400 N/C, u = 3.0 × 10⁴ m/s and θ = 30°
Solving for T;
T = 7.83 X10⁻⁷ s
Answer and Explanation:
a. An oxygen-filled balloon is not able to float in the air, because the oxygen inside the balloon is of the same density, that is, the same "weight" as the oxygen outside the balloon and present in the atmosphere. The balloon can only float if the gas inside it is less dense than atmospheric oxygen. Helium gas is less dense than atmospheric gas, so if a balloon is filled with helium gas, that balloon will be able to float because of the difference in density.
b. The ship is able to float in the water because its steel construction is hollow and full of air. This makes the average density of this ship less than the density of water, which makes the ship lighter than water and for this reason, this ship is able to float. In addition, the ship is partially immersed, allowing the weight of the ship on the water to counteract the buoyant force that the water promotes on the ship. Weight and buoyant are two opposing forces that keep the ship afloat.
Answer:2155 J
Explanation:
Given
Change in Internal energy i.e. decrease in Internal Energy
Heat added to system
According First law for a system
Thus 2155 J of work is done by system