Answer:
Therefore, The indicator that is best fit for the given titration is Bromocresol Green Color change from pH between 4.0 to 5.6
Bromocresol green, color change from pH = 4.0 to 5.6
Explanation:
The equation for the reaction is :

concentration of
= 10%
10 g of
in 100 ml solution
molar mass = 45.08 g/mol
number of moles = 10 / 45.08
= 0.222 mol
Molarity of 
= 2.22 M
number of moles of
in 20 mL can be determined as:

Concentration of 
= 2.22 M
Similarly, The pKa Value of
is given as 10.75
pKb value will be: 14 - pKa
= 14 - 10.75
= 3.25
the pH value at equivalence point is,
![pH= \frac{1}{2}pKa - \frac{1}{2}pKb-\frac{1}{2}log[C]](https://tex.z-dn.net/?f=pH%3D%20%5Cfrac%7B1%7D%7B2%7DpKa%20-%20%5Cfrac%7B1%7D%7B2%7DpKb-%5Cfrac%7B1%7D%7B2%7Dlog%5BC%5D)
![pH = \frac{14}{2}-\frac{3.25}{2}-\frac{1}{2}log [2.22]](https://tex.z-dn.net/?f=pH%20%3D%20%5Cfrac%7B14%7D%7B2%7D-%5Cfrac%7B3.25%7D%7B2%7D-%5Cfrac%7B1%7D%7B2%7Dlog%20%5B2.22%5D)

Therefore, The indicator that is best fit for the given titration is Bromocresol Green Color change from pH between 4.0 to 5.6
Either he’s busy, or he is just trying to ignore you.
Need more info tho
I had the same question, it's most likely B.
Answer:
The new pressure will be 0.225 kPa.
Explanation:
Applying combined gas law:

where,
are initial pressure and volume at initial temperature
.
are final pressure and volume at initial temperature
.
We are given:



Putting values in above equation, we get:


Hence, the new pressure will be 0.225 kPa.
Repeat trials multiple times