Answer:
Direction 1: Force is Non-zero and Not- constant
Direction 2: Force is Non-zero but constant
Explanation:
Given:
The picture of the map is attached. ( Missing from the question ).
Find:
The effect of force as it travels along each direction.
Solution:
- We know the relationship between change in potential and the force acting on the charge particle is given by:
F = - q*dV/ dr
Where,
q : Charge of the particle
V : Volt potential
dV/dr : Potential difference along a direction.
Direction 1:
- The color code of the map changes as the particle moves along this direction. Each color code represents a potential difference. So as the particle moves between different potential difference then according to the relationship given above The force varies along varies as particle moves from one color to another. Hence, a non zero force but not constant.
Direction 2:
- In the direction 2, the charged particle moves along the same color. The potential difference for each color is constant. Hence, according to the relationship of potential difference and force. If potential difference is constant then the Electrostatic Force on the charge is also constant. Hence, Force is non-zero and constant.
When a large rock is weathered into tiny pieces which add up the weight of the original rock, this demonstrates the law of conservation of matter.
According to this law the mass of an object doesn't change with time and also it does not depends on how the particles are arranged themselves.
Hence, option (C) is correct.
Answer:
a) m = 59.63 [kg]
b) Wm = 95.41 [N]
Explanation:
El peso de un cuerpo se define como el producto de la masa por la aceleración gravitacional. DE esta manera tenemos:
W = m*g
Donde:
m = masa [kg]
g = gravedad = 9.81 [m/s^2]
m = W / g
m = 585 / 9.81
m = 59.63 [kg]
Es importante aclarar que la masa se conserva independientemente de la ubicación del cuerpo en el espacio.
Por ende su masa sera la misma en la luna.
El peso en la luna se calcula como Wm y es igual a:
Wm = 59.63 * 1.6 = 95.41 [N]
Answer:
a) w = 7.27 * 10^-5 rad/s
b) v1 = 463.1 m/s
c) v1 = 440.433 m/s
Explanation:
Given:-
- The radius of the earth, R = 6.37 * 10 ^6 m
- The time period for 1 revolution T = 24 hrs
Find:
What is the earth's angular speed?
What is the speed of a point on the equator?
What is the speed of a point on the earth's surface located at 1/5 of the length of the arc between the equator and the pole, measured from equator?
Solution:
- The angular speed w of the earth can be related with the Time period T of the earth revolution by:
w = 2π / T
w = 2π / 24*3600
w = 7.27 * 10^-5 rad/s
- The speed of the point on the equator v1 can be determined from the linear and rotational motion kinematic relation.
v1 = R*w
v1 = (6.37 * 10 ^6)*(7.27 * 10^-5)
v1 = 463.1 m/s
- The angle θ subtended by a point on earth's surface 1/5 th between the equator and the pole wrt equator is.
π/2 ........... s
x ............ 1/5 s
x = π/2*5 = 18°
- The radius of the earth R' at point where θ = 18° from the equator is:
R' = R*cos(18)
R' = (6.37 * 10 ^6)*cos(18)
R' = 6058230.0088 m
- The speed of the point where θ = 18° from the equator v2 can be determined from the linear and rotational motion kinematic relation.
v2 = R'*w
v2 = (6058230.0088)*(7.27 * 10^-5)
v2 = 440.433 m/s
Answer:
c. is more than that of the fluid.
Explanation:
This problem is based on the conservation of energy and the concept of thermal equilibrium

m= mass
s= specific heat
\DeltaT=change in temperature
let s1= specific heat of solid and s2= specific heat of liquid
then
Heat lost by solid= 
Heat gained by fluid=
Now heat gained = heat lost
therefore,
1000 S_2=800 S_1
S_1=1.25 S_2
so the specific heat of solid is more than that of the fluid.