The answer is kilometers.
Answer:
17304 J
Explanation:
Complete statement of the question is :
In the winter activity of tubing, riders slide down snow covered slopes while sitting on large inflated rubber tubes. To get to the top of the slope, a rider and his tube, with a total mass of 84 kg , are pulled at a constant speed by a tow rope that maintains a constant tension of 350 N .
Part A
How much thermal energy is created in the slope and the tube during the ascent of a 30-m-high, 120-m-long slope?
Solution :
= tension force in the tow rope = 350 N
= length of the incline surface = 120 m
= work done by tension force = ?
The tension force acts parallel to incline surface, hence work done by tension force is given as

= height gained by the rider = 30 m
= total mass of rider and tube = 84 kg
Potential energy gained is given as

= Thermal energy created
Using conservation of energy

<span>step 1: energy required to heat coffee
E = m Cp dT
E = energy to heat coffee
m = mass coffee = 225 mL x (0.997 g / mL) = 224g
Cp = heat capacity of coffee = 4.184 J / gK
dT = change in temp of coffee = 62.0 - 25.0 C = 37.0 C
E = (224 g) x (4.184 J / gK) x (37.0 C) = 3.46x10^4 J
step2: find energy of a single photon of the radiation
E = hc / λ
E = energy of the photon
h = planck's constant = 6.626x10^-34 J s
c = speed of light = 3.00x10^8 m/s
λ = wavelength = 11.2 cm = 11.2 cm x (1m / 100 cm) = 0.112 m
E = (6.626x10^-34 J s) x (3.00x10^8 m/s) / (0.112 m) = 1.77x10^-16 J
step3: Number of photons
3.46x10^4 J x ( 1 photon / 1.77x10^-16 J) = 1.95x10^20 photons</span>
Without a bulb energy cant go through and it would be an open circuit blocking the energy from coming out.