1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
3 years ago
7

Responsibilities of a class are derived from ________________.

Physics
1 answer:
mihalych1998 [28]3 years ago
7 0

Answer:

The correct option is a behavioural models of the the to-be system.

Explanation:

As the  Use case analysis method generates the analysis classes list  such that the classes are capable of performing the behavior needed to make the system function successfully. From these analysis classes list the responsibilities of each class are defined.

As the list is derived from the behavioural models of the system, thus option a is the correct option.

You might be interested in
Two stones are launched from the top of a tall building. One stoneis thrown in a direction 30.0^\circ above the horizontal with
Butoxors [25]

Answer:

Part A)

t(1) > t(2), the stone thrown 30 above the horizontal spends more time in the air.

Part B)

x(f1) > x(f2), the first stone will land farther away from the building.

Explanation:

<u>Part A)</u>

Let's use the parabolic motion equation to solve it. Let's define the variables:

  • y(i) is the initial height, it is a constant.
  • y(f) is the final height, in our case is 0
  • v(i) is the initial velocity (v(i)=16 m/s)
  • θ1 is the first angle, 30°
  • θ2 is the first angle, -30°

For the first stone

y_{f1}=y_{i1}+v*sin(\theta_{1})t_{1}-0.5gt_{1}^{2}              

0=y_{i1}+16*sin(30)t_{1}-0.5*9.81*t_{1}^{2}

0=y_{i1}+8t_{1}-4.905*t_{1}^{2} (1)  

For the second stone  

0=y_{i2}+16*sin(-30)t_{2}-4.905t_{2}^{2}    

0=y_{i2}-8t_{2}-4.905t_{2}^{2} (2)            

 

If we solve the equation (1) we will have:

t_{1}=\frac{-8\pm \sqrt{64+19.62*y_{i}}}{-9.81}  

We can do the same procedure for the equation (2)

t_{1}=\frac{8\pm \sqrt{64+19.62*y_{i}}}{-9.81}

We can analyze each solution to see which one spends more time in the air.

It is easy to see that the value inside the square root of each equation is always greater than 8, assuming that the height of the building is > 0. Now, to get positive values of t(1) and t(2) we need to take the negative option of the square root.

Therefore, t(1) > t(2), it means that the stone thrown 30 above the horizontal spends more time in the air.

<u>Part B)</u>

We can use the equation of the horizontal position here.

<u>First stone</u>

x_{f1}=x_{i1}+vcos(30)t_{1}

x_{f1}=0+13.86*t_{1}

x_{f1}=13.86*t_{1}

<u>Second stone</u>

x_{2}=x_{i2}+vcos(-30)t_{2}

x_{1}=0+13.86*t_{1}

x_{1}=13.86*t_{2}

Knowing that t(1) > t(2) then x(f1) > x(f2)

Therefore, the first stone will land farther away from the building.

They land at different points at different times.

I hope it helps you!

3 0
3 years ago
How much heat is released when 432 g of water cools down from 71'c to 18'c?
maria [59]
The heat released by the water when it cools down by a temperature difference \Delta T is
Q=mC_s \Delta T
where
m=432 g is the mass of the water
C_s = 4.18 J/g^{\circ}C is the specific heat capacity of water
\Delta T =71^{\circ}C-18^{\circ}C=53^{\circ} is the decrease of temperature of the water

Plugging the numbers into the equation, we find
Q=(432 g)(4.18 J/g^{\circ}C)(53^{\circ}C)=9.57 \cdot 10^4 J
and this is the amount of heat released by the water.
7 0
3 years ago
Oh no! The Hulk just fell off the Empire State Building! Calculate how long it took him to fall straight down from the top of th
nekit [7.7K]

Answer:it takes approximately 148.8 seconds to achieve. The average person in a free-fall will hit the ground going at 9.66 m/s from the top of the Empire State Building.

Explanation:

3 0
3 years ago
Help me to answer my questions please
Andrei [34K]
2 is c
3 is a 
4 is b
5 is c
3 0
3 years ago
What type of animals does Dr. Grant study?
Rasek [7]
Dr. Alan Grant is the main protagonist in Jurassic Park, with the book written primarily from his perspective. He is a paleontology professor at the University of Denver and receives research funding from the Hammond Foundation. He became a world-renowned paleontologist after discovering dinosaur nest fossils in Montana. Billionaire John Hammond chooses Dr. Grant to evaluate his dinosaur amusement park because of his professional expertise and unbiased opinion on dinosaurs.

Idk if this is related to what you ask but it might help.
7 0
3 years ago
Other questions:
  • How does the thermosphere,(the outer most layer) help earth?
    7·1 answer
  • Show solution for # 4
    12·1 answer
  • Why does the cyclist have less kinetic energy at position A than at position B?
    12·1 answer
  • What parts go in the center of the atom?
    5·1 answer
  • Find the resistance of an electric light bulb if a current of 0.08 A flows when the potential difference across the bulb is 120
    15·1 answer
  • 1. On one of the shelves in your physics lab is displayed an antique telescope. A sign underneath the instrument says that the t
    13·1 answer
  • The _______ is responsible for determining the frequency of vibration of the air column in the tube within a wind instrument.
    10·1 answer
  • Increasing which of the following would increase the magnetic force between the permanent magnet and the coil? A. Transformer B.
    5·1 answer
  • Name the type of reproduction process as shown in Fig 1 and Fig 2. State one point of difference between the two
    11·1 answer
  • Which elements have similar behavior? barium silicon aluminum strontium osmium beryllium ​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!