Chemical Equation Balancer
Answer:
Three hydrogen atoms to form PH₃.
Explanation:
Hello!
In this case, since the elements belonging to the nitrogen family (N, P, As, Sb and Bi) show five valence electrons, because there are five electrons at their outer shell, it is clear that if phosphorous bonds with hydrogen, it is going to require the same amount of oxygen atoms (3) because elements having five valence electrons need 3 bonds in order to attain the octet (5+3=8).
Therefore the compound would be:

Which is phosphine.
Best regards!
To determine the relative atomic mass of thallium, we multiply the molar mass of the isotopes to their corresponding relative abundance. The molecular percentages should sum up to 1. In this case, we multiply 203 by 0.295 and 205 by 0.705 and add the answers of the two. The final atomic mass is 204.41 g/mol.
Answer:
I. Increasing pressure will allow more frequent successful collision between particles due to the particles being closer together.
II. Rate of reaction increases due to more products being made; as increased pressure favours the exothermic side of the equilibrium.
III. Increasing temperature provides particles lots of (Kinetic) energy, for more frequent successful collision due to the particles moving at a faster rate than before. However, favouring the endothermic side of the equilibrium due to lots of energy required to break and form new bonds.
IV. Rate of reaction increases due to increase temperature favouring both directions of the equilibrium - causing products to form faster.
Hope this helps!
Answer:

Explanation:
Given that,
Mass of the sample, m = 275 g
It required 10.75 kJ of heat to change its temperature from 21.2 °C to its melting temperature, 327.5 °C.
We need to find the specific heat of the metal. The heat required by a metal sample is given by :

c is specific heat of the metal

So, the specific heat of metal is
.