Answer:
vineger
Explanation:
homogeneous mixture cannot be separated pyhsically
Answer:
- The limiting reactant is lead(II) nitrate.
- 7.20 g of precipitate are formed.
- 1.9 g of the excess reactant remain.
Explanation:
The reaction that takes place is:
- Pb(NO₃)₂(aq) + 2KCl(aq) → PbCl₂(s) + 2KNO₃(aq)
With a percent yield of 87.5%.
To determine the limiting reactant, first we <u>convert the masses of each reactant to moles</u>, using their molar mass:
- 9.82 g Pb(NO₃)₂ ÷ 331.2 g/mol = 0.0296 mol Pb(NO₃)₂
- 5.76 g KCl ÷ 74.55 g/mol = 0.0773 mol KCl
Looking at the stoichiometric coefficients, we see that 1 mol of Pb(NO₃)₂ would react completely with 2 moles of KCl. Following that logic, 0.0296 mol Pb(NO₃)₂ would react completely with (2x0.0296) 0.0592 mol of KCl. We have more than that amount of KCl, this means KCl is the reactant in excess and Pb(NO₃)₂ is the limiting reactant.
To calculate the mass of precipitate (PbCl₂) formed, we <u>use the moles of the limiting reactant</u>:
- 0.0296 mol Pb(NO₃)₂
*
* 87.5/100 = 7.20 g PbCl₂
- Keeping in mind the reaction yield, the moles of Pb(NO₃)₂ that would react are:
- 0.0296 mol Pb(NO₃)₂ * 87.5/100 = 0.0259 mol Pb(NO₃)₂
Now we <u>convert that amount to moles of KCl and finally into grams of KCl</u>:
- 0.0259 mol Pb(NO₃)₂
*
= 3.86 g KCl
3.86 g of KCl would react, so the amount remaining would be:
When a gamma ray is emitted from the nucleus of an atom it reduces the overall energy of the nucleus. Emission of gamma rays almost happens along with beta and alpha emissions. After the two emissions, the nucleus of the atom would still be in an excited state. To achieve stability, gamma rays are emitted which will decrease the overall energy of the nucleus.
The reactants has 2 NO2 and the product has 3. So we need to make sure we have 6 on each side.
Al + 3Fe(NO2)2 -> Fe + 2Al(NO2)3
This leaves us with us just to balance the Fe And Al
2Al + 3Fe(NO2)2 -> 3Fe + 2Al(NO2)3
Hope this helped :)
Magic number is any number in electron shells that suggest stability. It corresponds to total number of electrons in filled electron shells.
If an electron is having magic number, then it forms stable bonds.
Explanation:
The magic numbers are 2,10,18,36,54, 86 and 126. This refers to the total number of electrons that an electron can have when it is completely filled.
Atomic nuclei which carries either of these nucleons have high binding energy as compared to others. Hence, they have high stability. Bonds in such elements are more strong.
Radioactive decay of such elements is very slow.
Eugene Winger coined the term "magic number".