Answer:
0.057 joules is needed to create the total rotational energy each second.
Explanation:
The energy rate is the ratio of total energy to time, which coincides with the definition of power at constant rate:




0.057 joules is needed to create the total rotational energy each second.
Answer:
PE = 3.92x10^16J
potential energy
Explanation:
PE = m*g*h
mass of water = 1000kg/m³
(4*10^10m³)*1000kg = 4*10^13kg
PE = (4*10^13kg)*(9.81m/s²)*(100m)
PE = 3.92x10^16J
Answer:
a) λ = 189.43 10⁻⁹ m b) λ = 269.19 10⁻⁹ m
Explanation:
The diffraction network is described by the expression
d sin θ= m λ
Where m corresponds to the diffraction order
Let's use trigonometry to find the breast
tan θ = y / L
The diffraction spectrum is measured at very small angles, therefore
tan θ = sin θ / cos θ = sin θ
We replace
d y / L = m λ
Let's place in the first order m = 1
Let's look for the separation of the lines (d)
d = λ L / y
d = 501 10⁻⁹ 9.95 10⁻² / 15 10⁻²
d = 332.33 10⁻⁹ m
Now we can look for the wavelength of the other line
λ = d y / L
λ = 332.33 10⁻⁹ 8.55 10⁻²/15 10⁻²
λ = 189.43 10⁻⁹ m
Part B
The compound wavelength B
λ = 332.33 10⁻⁹ 12.15 10⁻² / 15 10⁻²
λ = 269.19 10⁻⁹ m
Answer:
Nebula
Explanation:
Given that in the constellation of Orion, you can see a group of stars and other objects that appear in the shape of a sword. Ln the middle of the sword, a bright "fuzzy star" appears. Astronomers looking at this object through telescopes refer to it as a "stellar nursery." Another name for this object is called NEBULA.
The space where new stars are forming anew is known as nebulae
Hello. You did not inform the experiment that Arthur is conducting, which makes it impossible for your question to be answered accurately. However, I will try to help you in the best possible way.
The hypothesis is an assumption that is made before the experiment is carried out. This hypothesis is formed with the observation of some phenomenon of nature where the researcher believes that two or more elements interact to form a result. In this case, the experiment is carried out to determine whether the assumption, that is, the hypothesis is false or true. In the event that an experiment determines that the hypothesis is false, two things may have occurred: (a) the experiment was set up, or analyzed incorrectly, (b) the elements tested have no relation to the observed phenomenon.