Each energy sublevel corresponds to an orbital of a different shape.
Explanation:
Two sublevels of the same principal energy level differs from each other if the sublevels corrresponds to an orbital of a different shape.
- The principal quantum number of an atom represents the main energy level in which the orbital is located or the distance of an orbital from the nucleus. It takes values of n = 1,2,3,4 et.c
- The secondary quantum number gives the shape of the orbitals in subshells accommodating electrons.
- The number of possible shapes is limited by the principal quantum numbers.
Take for example, Carbon:
1s² 2s² 2p²
The second energy level is 2 but with two different sublevels of s and p. They have different shapes. S is spherical and P is dumb-bell shaped .
Learn more:
Quantum number brainly.com/question/9288609
#learnwithBrainly
Answer:
Large; small.
Explanation:
A telescope can be defined as an optical instrument or device which comprises of a curved mirror and lenses used for viewing distant objects i.e objects that are very far away such as stars and other planetary bodies. The first telescope was invented by Sir Isaac Newton.
To have the highest magnification in a telescope, the focal length of the objective lens should be large and the focal length of the eyepiece lens should be small.
This ultimately implies that, the eyepiece lens has a small focal length while the objective lens has a large focal length.
Answer:
The acceleration is equal to the net force divided by the mass. If the net force acting on an object doubles, its acceleration is doubled. If the mass is doubled, then acceleration will be halved. If both the net force and the mass are doubled, the acceleration will be unchanged.
Answer:
See below
Explanation:
See attached diagram
280 km east then 190 km north
Use Pythagorean theorem to find the resultant displacement
d^2 = 280^2 + 190^2
d = 338.4 km
Angle will be arctan ( 190/280) = 34.16 °
The vector sum of forces acting on a non-accelerating object equals zero.
equation form: ΣF = 0