Question: What was his initial velocity?
Answer: 3.62 m/s
Answer:
3.0 cm
Explanation:
We can solve this problem by using the mirror equation:

where
f is the focal length of the mirror
p is the distance of the object from the mirror
q is the distance of the image from the mirror
In this problem we have:
f = 1.5 cm is the focal length of the mirror (positive for a concave mirror)
p = 3.0 cm is the distance of the object from the mirror
Therefore, the distance of the image is:

And the positive sign means that the image is real.
(The second part of the exercise is just the description of the image of the first exercise).
Answer:

Explanation:
As we know that there is no external torque on the system of two disc
then the angular momentum of the system will remains conserved
So we will have

now we have

also we have

now from above equation we have

now we have


Answer:
Archaeology
Explanation:
Radioisotopes are radioactive atoms of an element in which their atoms contain excess energy making them unstable. When broken down they become more stable releasing radiations.
Carbon 14 is a radioactive isotope that is used in archaeology to study and estimate the lifespan and age of organic materials such as wood, leather. Carbon 14 can be used to estimate the ages of materials up to 50000 to 60000 years.
Answer:
the force is perpendicular to the speed, it is a type of force that changes the direction of the speed, as in the uniform circular motion te, but does not change its modulus.
Explanation:
The magnetic force is given by the expression
F = q v x B
The bold are vectors, where v is the velocity and B is the magnetic field, the product is the cross product whose result is a vector perpendicular to the two vectors (v and B)
From the above, the force is perpendicular to the speed, it is a type of force that changes the direction of the speed, as in the uniform circular motion te, but does not change its modulus.
Even when the change in direction is real and is caused by a centripetal force
For there to be a change in the velocity modulus there must be a force parallel to the velocity direction, generally a force in electrical