Given:
The force of attraction is F = 48.1 N
The separation between the charges is

Also, the magnitude of charge q1 = q2 = q.
To find the magnitude of charge.
Explanation:
The magnitude of charge can be calculated by the formula

Here, k is the Coulomb's constant whose value is

On substituting the values, the magnitude of charge will be

Thus, the magnitude of each charge is 9.91 x 10^(-4) micro Coulombs.
The protons and electrons are held in place on the x axis.
The proton is at x = -d and the electron is at x = +d. They are released at the same time and the only force that affects movement is the electrostatic force that is applied on both subatomic particles. According to Newton's third law, the force Fpe exerted on protons by the electron is opposite in magnitude and direction to the force Fep exerted on the electron by the proton. That is, Fpe = - Fep. According to Newton's second law, this equation can be written as
Mp * ap = -Me * ae
where Mp and Me are the masses, and ap and ae are the accelerations of the proton and the electron, respectively. Since the mass of the electron is much smaller than the mass of the proton, in order for the equation above to hold, the acceleration of the electron at that moment must be considerably larger than the acceleration of the proton at that moment. Since electrons have much greater acceleration than protons, they achieve a faster rate than protons and therefore first reach the origin.
Answer:
Explanation:
A pressure that causes the Hg column to rise 1 millimeter is called a torr. The term 1 mmHg used can replaced by the torr.
1 atm = 760 torr = 14.7 psi.
A.
120 mmHg
Psi:
760 mmHg = 14.7 psi
120 mmHg = 14.7/760 * 120
= 2.32 psi
Pa:
1mmHg = 133.322 Pa
120 mmHg = 120 * 133.322
= 15998.4 Pa
B.
80 mmHg
Psi:
760 mmHg = 14.7 psi
80 mmHg = 14.7/760 * 80
= 1.55 psi
Pa:
1mmHg = 133.322 Pa
80 mmHg = 80 * 133.322
= 10665.6 Pa
The answer is <span>d. the sun</span>
The answer is 30 ... same as the Atomic number.