1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scrat [10]
4 years ago
13

A jet aircraft with mass of 658,055 kilograms is flying straight downward. At an instant the plane's engine is producing an down

ward thrust (force) of 1,484,732.5 Newtons and air resistance is exerting a force of 740,492.6 Newtons upward. What is the acceleration of the plane in m/s2 at that instant?
Physics
1 answer:
sdas [7]4 years ago
3 0

Answer:

The acceleration of the plane is 10.93 m/s² at that instant.

Explanation:

Given:

Mass of aircraft, m=658055\textrm{ kg}

Downward thrust produced, F=1484732.5\textrm{ N}

Upward resistance force by air, F_{R}=740492.6\textrm{ N}

Weight of the aircraft acting donward, W=mg=658055\times 9.8=6448939\textrm{ N}

According to Newton's second law, net force acting on an object is equal to the product of mass and its acceleration.

Here, the net force is given as the difference of downward forces and upward forces.

F_{net}= F+W-F_{R}\\ F_{net}=1484732.5+6448939-740492.6=7193178.9\textrm{ N}

Now,

F_{net}=ma\\7193178.9=658055a\\a=\frac{7193178.9}{658055}=10.93\textrm{ }m/s^{2}

Therefore, the acceleration of the plane is 10.93 m/s² at that instant.

You might be interested in
A zone reconnaissance involves a directed effort to obtain detailed information on all routes, obstacles, terrain, enemy forces,
son4ous [18]

Answer:

It is True

Explanation:.

A  commander assigns a zone reconnaissance mission when he seeks additional information on a zone before committing other forces in the zone. It is appropriate when the enemy situation is vague,  existing knowledge of the terrain is limited, or combat operations have altered the terrain. A zone  reconnaissance could include several route or area reconnaissance missions assigned to subordinate units.

7 0
3 years ago
A boy in a wheelchair (total mass 54.5 kg) has speed 1.40 m/s at the crest of a slope 2.10 m high and 12.4 m long. At the bottom
babymother [125]

Answer:

630.75 j

Explanation:

from the question we have the following

total mass (m) = 54.5 kg

initial speed (Vi) = 1.4 m/s

final speed (Vf) = 6.6 m/s

frictional force (FF) = 41 N

height of slope (h) = 2.1 m

length of slope (d) = 12.4 m

acceleration due to gravity (g) = 9.8 m/s^2

work done (wd) = ?

  • we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy

wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x  d)

wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x  d) - (mgh)

where wd = work done

m = mass

h = height

g = acceleration due to gravity

FF = frictional force

d = distance

Vf and Vi = final and initial velocity

wd =  (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)            

wd = 630.75 j

3 0
3 years ago
the positive particle has a charge of 31.7 mC and the particles are 2.80 mm apart, what is the electric field at point A located
vichka [17]

Answer:

the electric field at point A is

E = 5.5 ×10¹³N/C(-x direction)

Explanation:

given

electrostatics constant k = 9.0×10⁹

charge q = 31.7mC= 31.7×10⁻³C

distance r = 2.80mm

distance from midpoint to point A = 2.00mm

attached is the diagram of the solution, describing the position of the charge

note x = r/2, where x is the distance from midpoint of r to the particle

using Pythagoras theorem as in the attachment, x = 2.44mm= 2.44×10⁻³m

the electric field at point A is given as

vector <em>E </em>= 2E×cos θ( -x direction)

recall E =kq/x²

where k is the electrostatics constant = 1/4πε₀

where ε₀ is permittivity of free space

therefore using E =2{kq/x²}cosθ

∴cosθ = adjacent/hypotenuse

cosθ=1.40/2.44

E =2 {(9.0×10⁹ × 31.7×10⁻³) ÷ (2.44×10⁻³)²}×(1.40/2.44)(-x)

E=2{4.79×10¹³}×(0.574)(-x)

E = 2×2.75 ×10¹³N/C(-x direction)

Vector <em>E= </em>5.5 ×10¹³N/C(-x direction)

3 0
3 years ago
An inductor of inductance 0.02H and capacitor of capacitance 2 microF are connected in series to an AC source of frequency 200/p
Ad libitum [116K]
C because it’s not a or B so 50/50 c or d and d is def not the answer so c
5 0
2 years ago
A particle has a charge of q = +4.9 μC and is located at the origin. As the drawing shows, an electric field of Ex = +242 N/C ex
irina1246 [14]

a)

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

F_{B_x}=0

F_{B_y}=0

b)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=0

F_{B_y}=3.21\cdot 10^{-3}N (+z axis)

c)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=3.21\cdot 10^{-3} N (+y axis)

F_{B_y}=3.21\cdot 10^{-3}N (-x axis)

Explanation:

a)

The electric force exerted on a charged particle is given by

F=qE

where

q is the charge

E is the electric field

For a positive charge, the direction of the force is the same as the electric field.

In this problem:

q=+4.9\mu C=+4.9\cdot 10^{-6}C is the charge

E_x=+242 N/C is the electric field, along the x-direction

So the electric force (along the x-direction) is:

F_{E_x}=(4.9\cdot 10^{-6})(242)=1.19\cdot 10^{-3} N

towards positive x-direction.

The magnetic force instead is given by

F=qvB sin \theta

where

q is the charge

v is the velocity of the charge

B is the magnetic field

\theta is the angle between the directions of v and B

Here the charge is stationary: this means v=0, therefore the magnetic force due to each component of the magnetic field is zero.

b)

In this case, the particle is moving along the +x axis.

The magnitude of the electric force does not depend on the speed: therefore, the electric force on the particle here is the same as in part a,

F_{E_x}=1.19\cdot 10^{-3} N (towards positive x-direction)

Concerning the magnetic force, we have to analyze the two different fields:

- B_x: this field is parallel to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=0^{\circ}, so the force due to this field is zero.

- B_y: this field is perpendicular to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=90^{\circ}. Therefore, \theta=90^{\circ}, so the force due to this field is:

F_{B_y}=qvB_y

where:

q=+4.9\cdot 10^{-6}C is the charge

v=345 m/s is the velocity

B_y = +1.9 T is the magnetic field

Substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And the direction of this force can be found using the right-hand rule:

- Index finger: direction of the velocity (+x axis)

- Middle finger: direction of the magnetic field (+y axis)

- Thumb: direction of the force (+z axis)

c)

As in part b), the electric force has not change, since it does not depend on the veocity of the particle:

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

For the field B_x, the velocity (+z axis) is now perpendicular to the magnetic field (+x axis), so the force is

F_{B_x}=qvB_x

And by substituting,

F_{B_x}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+x axis)

- Thumb: force (+y axis)

For the field B_y, the velocity (+z axis) is also perpendicular to the magnetic field (+y axis), so the force is

F_{B_y}=qvB_y

And by substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+y axis)

- Thumb: force (-y axis)

3 0
4 years ago
Other questions:
  • Which material absorbs some colors of light and reflects other colors?
    14·2 answers
  • A net force of 60 N north acts on an object with a mass of 30 kg. Use Newton's second law of motion to calculate the amount of a
    12·1 answer
  • A weight watcher who normally weighs 400 N stands on top of a very tall ladder so she is one Earth radius above Earth's surface
    15·1 answer
  • When light waves pass through the lenses of a pair of glasses, the light waves ______________ .
    10·1 answer
  • Examples of how thermal energy transfer by conduction, convection, or radiation.
    11·1 answer
  • What type of atom os K2CO3?
    7·1 answer
  • An Air Force plane lands with a velocity of 125 m/s and accelerates at a maximum rate of -6.5 m/s^2.
    14·1 answer
  • When a conducting plate swings through a magnetic field, which is true?
    11·2 answers
  • 2 Calculate the mass of a car that hits a wall, during an accident, with a force of 961 N and an acceleration of 31m/s2. (4D) (F
    6·1 answer
  • 16. PHYSICS The height h of a falling object is given by h = vt - gt2, where vis the initial velocity of the object, t is time,
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!