<u>Answer:</u> The
for the reaction is -1052.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times \Delta H_1]+[1\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%5CDelta%20H_1%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1052.8 kJ.
Answer:
They are helpers of the world who find out about the natural world and try to explain what they have observed.
Explanation:
Answer: Thomson
Explanation: It verified J. J. Thomson's work on the atomic structure.
Answer:
hydrogen nitrate + sodium hydrochlorate- sodium nitrate+ water + co2 (acid base reaction)
silver nitrate + calcium chloride - silver chloride+ calcium nitrate ( double displacement reaction)
hydrogen + nitrogen - ammonia gas ( simple contact reaction)
hydrogen peroxide - water + oxygen ( single displacement reaction)
Hope it helps :)
The volume of 0.20 moles of helium at STP is 4.5 liters.
Explanation:
Given:
Number of moles = 0.20 moles
To Find:
The volume of Helium at STP =?
Solution:
According to ideal gas law
PV = nRT
where
P is pressure,
V is volume,
n is the number of moles
R is the gas constant, and
T is temperature in Kelvin.
The question already gives us the values for p and T
,because helium is at STP. This means that temperature is 273.15 K and pressure is 1 atm
.
We also already know the gas constant. In our case, we'll use the value of
0.08206 L atm/K mol since these units fit the units of our given values the best
On substituting these values we get



V = 4.5 Liters