1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serggg [28]
3 years ago
7

An inventor claims to have devised a cyclical power engine that operates with a fuel whose temperature is 750 °C and radiates wa

ste heat to a sink at 0 °C. He also claims that this engine produces 3.3 kW while rejecting heat at a rate of 4.4 kW. Is this claim valid?
Engineering
1 answer:
Phantasy [73]3 years ago
5 0

Answer:

Yes

Explanation:

Given Data

Temprature of source=750°c=1023k

Temprature of sink =0°c=273k

Work produced=3.3KW

Heat Rejected=4.4KW

Efficiency of heat engine(η)=\frac{Work produced}{Heat supplied}

and

Heat Supplied {\left (Q_s\right)}=Work Produced(W)+Heat rejected\left ( Q_r \right )

{Q_s}=3.3+4.4=7.7KW

η=\frac{3.3}{7.7}

η=42.85%

Also the maximum efficiency of a heat engine operating between two different Tempratures i.e. Source & Sink

η=1-\frac{T_ {sink}}{T_ {source}}

η=1-\frac{273}{1023}

η=73.31%

Therefore our Engine Efficiency is less than the maximum efficiency hence the given claim is valid.

You might be interested in
A PMOS device with VT P = −1.2 V has a drain current iD = 0.5 mA when vSG = 3 V and vSD = 5 V. Calculate the drain current when:
Ksju [112]
The answer is b ! Hope I helped
7 0
2 years ago
Assignment # 2
allsm [11]

Answer:

1.Economists divide the factors of production into four categories: land, labor, capital, and entrepreneurship. The first factor of production is land, but this includes any natural resource used to produce goods and services.

2.Management skills can be defined as certain attributes or abilities that an executive should possess in order to fulfill specific tasks in an organization. They include the capacity to perform executive duties in an organization. ... and practical experience as a manager.                                                                              3.No corrective action is required when the deviations are within acceptable limits. However, when the deviations go beyond the acceptable range, in the important areas, it demands immediate managerial attention so that deviations do not occur again and standards are accomplished.

5 0
3 years ago
Carbon dioxide (CO2) at 1 bar, 300 K enters a compressor operating at steady state and is compressed adiabatically to an exit st
Zielflug [23.3K]

Answer:

A.) 0.08 kJ/kg.K

B.) 207.8 KJ/Kg

C.) 0.808

Explanation:

From the question, the use of fluids mechanic table will be required. In order to get the compressor processes, the kinetic energy and the potential energy will be negligible while applying the ideal gas model.

Since the steam is a closed system, the carbon dioxide will be compressed adiabatically.

Please find the attached files for the solution and the remaining explanation.

6 0
3 years ago
An ideal reheat Rankine cycle with water as the working fluid operates the boiler at 15,000 kPa, the reheater at 2000 kPa, and t
solniwko [45]

Answer:

See the explanation below.

Explanation:

First find the enthalpies h₁, h₂, h₃, h₄, h₅, and h₆.

Find h₁:

Using Saturated Water Table and given pressure p₁ = 100 kPa

h₁ = 417.5 kJ/kg

Find h₂:

In order to find h₂, add the w_{p} to h₁, where  w_{p}  is the work done by pump and h₁ is the enthalpy computed above h₁ = 417.5 kJ/kg.

But first we need to compute  w_{p} To computer  

Pressures:

p₁ = 100 kPa

p₂ = 15,000 kPa

and

Using saturated water pressure table, the volume of water v_{f} = 1.0432

Dividing 1.0432/1000 gives us:

Volume of water = v₁ =  0.001043 m³/kg

Compute the value of h₂:

h₂ = h₁ + v₁ (p₂ - p₁)

    = 417.5 kJ/kg + 0.001043 m³/kg ( 15,000 kPa - 100 kPa)

    =  417.5 + 0.001043 (14900)

    = 417.5 + 15.5407

    = 433.04 kJ/kg

Find h₃  

Using steam table:

At pressure p₃ = 15000 kPa

and Temperature = T₃ = 450°C

Then h₃ = 3159 kJ/kg

The entropy s₃ = 6.14 kJ/ kg K

Find h₄

Since entropy s₃ is equal to s₄ So

s₄ = 6.14 kJ/kgK

To compute h₄

s₄ = s_{f} + x_{4} s_{fg}

x_{4} = s_{4} -s_{f} /s_{fg}

x_{4} = 6.14 -  2.45 / 3.89

x_{4}   = 0.9497

The enthalpy h₄:

h₄ = h_{f} +x_{4} h_{fg}

    = 908.4 + 0.9497(1889.8)

    =  908.4 + 1794.7430

    = 2703 kJ/kg

This can simply be computed using the software for steam tables online. Just use the entropy s₃ = 6.14 kJ/ kg K and pressure p₄ = 2000 kPa

Find h₅

Using steam table:

At pressure p₅ = 2000 kPa

and Temperature = T₅ = 450°C

Then h₅  = 3358 kJ/kg

Find h₆:

Since the entropy s₅ = 7.286 kJ/kgK is equal s₆ to  So

s₆ = 7.286 kJ/kgK = 7.29 kJ/kgK

To compute h₆

s₆ = s_{f} + x_{6} s_{fg}

x_{6} = s_{6} -s_{f} /s_{fg}

x_{6} = 7.29 - 1.3028 / 6.0562

x_{6}   = 0.988

The enthalpy h₆:

h₆ = h_{f} +x_{6} h_{fg}

    = 417.51 + 0.988 (2257.5)

    = 417.51 + 2230.41

  h₆ =  2648 kJ/kg

This can simply be computed using the software for steam tables online. Just use the entropy s₅ = 7.286 kJ/kgK and pressure p₅ = 2000 kPa

Compute power used by pump:

P_{p} is found by using:

mass flow rate = m =  1.74 kg/s

Volume of water = v₁ =  0.001043 m³/kg

p₁ = 100 kPa

p₂ = 15,000 kPa

P_{p}  = ( m ) ( v₁ ) ( p₂ - p₁ )

     = (1.74 kg/s) (0.001043 m³/kg) (15,000 kPa - 100 kPa)

     = (1.74 kg/s) (0.001043 m³/kg) (14900)

     = 27.04

P_{p} = 27 kW

Compute heat added q_{a} and heat rejected q_{r}  from boiler using computed enthalpies:

q_{a} = ( h₃ - h₂ ) + ( h₅ - h₄ )

      = ( 3159 kJ/kg - 433.04 kJ/kg ) + ( 3358 kJ/kg - 2703 kJ/kg )

      = 2726 + 655

      = 3381  kJ/kg

q_{r} =  h₆ - h₁

  = 2648 kJ/kg - 417.5 kJ/kg

  = 2232 kJ/kg

Compute net work

W_{net} = q_{a} - q_{r}

       = 3381  kJ/kg - 2232 kJ/kg

       = 1150 kJ/kg

Compute power produced by the cycle

mass flow rate = m =  1.74 kg/s

W_{net} = 1150 kJ/kg

P = m * W_{net}

  = 1.74 kg/s * 1150 kJ/kg

  = 2001 kW

Compute rate of heat transfer in the reheater

Q = m * ( h₅ - h₄ )

   =  1.74 kg/s * 655

   =  1140 kW

Compute Thermal efficiency of this system

μ_{t} = 1 - q_{r} /  q_{a}

   = 1 - 2232 kJ/kg / 3381  kJ/kg

   = 1 - 0.6601

   = 0.34

   = 34%

7 0
3 years ago
1. Under what conditions can soils be chemically stabilized?
marshall27 [118]

Answer:

All will be Explained below.

Explanation:

1) Under which Condition can a soil be chemically Stabilize.

Answer

a). Plasticity Index :A soil with a high value of plasticity Index is not good for various engineering projects. The introduction of line helps in reducing plasticity due cation exchange reaction.Pozzolanic reaction over time reduces plasticity and increase index strength due to the formation of calcium - silicate hydrate.

7 0
3 years ago
Other questions:
  • 2. A fluid at 14.7 psi (lb-f per square inch) with kinematic viscosity (????????) 1.8 x10-4 ft2/sec and density(????????) 0.076
    11·1 answer
  • What is the difference between tension and compression?
    9·1 answer
  • A power of 100 kW (105 W) is delivered to the other side of a city by a pair of power lines, between which the voltage is 12,000
    9·1 answer
  • Which of the following is true of dead zones? a. They are formed when a volcanic eruption covers the soil with ash. b. They are
    15·1 answer
  • Selling a new vehicle pays a salesperson $1500. Selling a used vehicle pays a commission of 5% of the selling price. Write an in
    9·1 answer
  • 1. Which of the following is the ideal way to apply pressure onto pedals?
    14·2 answers
  • What should you consider when choosing the type of hearing protection you use?
    15·1 answer
  • How to Cancel prescription
    12·1 answer
  • What classes do you have to take in college for be a system software engineer
    14·1 answer
  • How could angela use the puzzle to model semiconductors? as an n-type semiconductor with the pegs representing electrons and the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!