Answer:
Option C. 251 kJ
Explanation:
The activation energy (Ea) of a given reaction is the minimum energy that must be overcomed for reactant to proceed to product.
The activation energy (Ea) can be obtained from an energy profile diagram by simply calculating the difference between the energy of the activation complex (i.e the peak) and the energy of the reactant.
Thus, we can obtain the activation energy for the reaction above as follow:
Activation complex = 332.6 kJ
Energy of reactant = 81.6 kJ
Activation energy =?
Activation energy = Activation complex – Energy of reactant
Activation energy = 332.6 – 81.6
Activation energy = 251 kJ
Therefore, the activation energy of the reaction is 251 kJ
2C3H6 (g) + 2NH3 (g) + 3O2 (G) -> 2C3H3N (g) + 6H2O (g)
First off.. not a chem board.. but n e way.
This is a limiting reagent problem.
set it up as a DA problem.(Dimension Analysis)
Start with what you want.
you want Grams of acrylonitrile (C3H3N)
so start with that (Using ACL in place of Acrylonitrile.. just for ease of typing)
(g) = (53 g of ACL/1mol ACL) (2 mols ACL/2 mol C3H6)/ (1mol C3H6/42 grams) (15.0 grams)
solve that you wiill get grams of Acrylonitrile created by 15 grams oc C3H6 = 18.9g
Same setup for the two other reactants.
so i did it and for
oxygen I got 11.04 grams
and for Ammonia i got 15.29 grams
So the most you can make is 11.04 grams because if you have ot make any more .. you will have to get more O2 .. but since you have only 10 grams of it .. that is the most u can make in this reaction.
Both the other reactants are in excess.
rate brainliest pls
Answer:
Don't post any question if isn't related to the topic or to your homework or assignment.
Explanation: