Answer:
A. releases a large amount of heat
Explanation:
A reaction is said to be spontaneous if it can proceed on its own without the addition of external energy. A spontaneous reaction is not determined by the length of time, because some spontaneous reactions are completed after a long period of time. They are exothermic in nature. An example is the conversion of graphite to carbon which takes a long period of time to complete. Spontaneous reactions are known to increase entropy in a system. Entropy is the rate of disorder in a system.
In the combustion of fire, energy is released to the surroundings as there is a decrease in energy. This is an example of a spontaneous reaction because it is an exothermic reaction, which causes an increase in entropy and a decrease in energy.
Answer: Tin (Sn)
Explanation: The electron configuration for tin (Sn) is shown in the picture. It's last electrons are:
5s^2 4d^10 5p^2
The valence electrons are in the 5th electron shell and include 2 each in the 5s and 5p orbitals.
Answer:
D. Rabbit
Explanation:
The rabbit is the consumer because he/she (im not judging) will have to consume other plants or small insects to get his/her (again not judging) energy
B. It keeps the warm inside
Answer:
Final pH of the solution: 2.79.
Explanation:
What's in the solution after mixing?
,
where
is the concentration of the solute,
is the number of moles of the solute, and
is the volume of the solution.
.
Acetic (ethanoic) acid:
.
.
Hydrochloric acid HCl:
.
.
HCl is a strong acid. It will completely dissociate in water to produce H⁺. The H⁺ concentration in the solution before acetic acid dissociates shall also be
.
The Ka value of acetic acid is considerably small. Acetic acid is a weak acid and will dissociate only partially when dissolved. Construct a RICE table to predict the portion of acetic acid that will dissociate. Let the change in acetic acid concentration be
.
.
.
.
Rewrite as a quadratic equation and solve for
:

.
The pH of a solution depends on its H⁺ concentration.
At equilibrium
.
.