The frequency of oscillation is 2.153 Hz
What is the frequency of spring?
Spring Frequency is the natural frequency of spring with a weight at the lower end. Spring is fixed from the upper end and the lower end is free.
For the mass-spring system in this problem,
The Frequency of spring is calculated with the equation:

Where,
f = frequency of spring
k = spring constant = 64 N/m
m = mass attached to spring = 350g = 0.350 kg
a = maximum acceleration = 5.3 m/s^2
Substituting the values in the equation,



Hence,
The frequency of oscillation is 2.153 Hz
Learn more about frequency here:
<u>brainly.com/question/13978015</u>
#SPJ4
Disagree.
Fluoresce objects will only glow when put under actual Ultraviolet light. This is due to the molecules becoming excited by the ultraviolet radiation.
Microwaves give micro-waves that are present in another spectrum of wave length and will not be able to fluoresce the molecules. If it’s not “ultra violet “.... it’s not going to glow.
Answer:
The helicopter uses 35 gallons to fly for 5 hours.
Explanation:
The amount of gas that a helicopter uses for flying varies directly proportional to the number of hours spent flying.
g ∝ T
where g represents amount of gas and T time of flight.
Then,

The helicopter files 4 hours and uses 28 gallons of fuel.
Here, g₁= 28 gallons, T₁=4 hours
g₂=?, T₂=5 hours.


⇒28×5= g₂×4
⇒ g₂×4=28×5

gallons
The helicopter uses 35 gallons to fly for 5 hours.
Force is found by multiplying mass (kg) and acceleration (m/s^2), so the metric unit of force is kg*m/s^2 or N (newtons)
I don't completely understand your drawing, although I can see that you certainly
did put a lot of effort into making it. But calculating the moment is easy, and we
can get along without the drawing.
Each separate weight has a 'moment'.
The moment of each weight is:
(the weight of it) x (its distance from the pivot/fulcrum) .
That's all there is to a 'moment'.
The lever (or the see-saw) is balanced when (the sum of all the moments
on one side) is equal to (the sum of the moments on the other side).
That's why when you're on the see-saw with a little kid, the little kid has to sit
farther away from the pivot than you do. The kid has less weight than you do,
so he needs more distance in order for his moment to be equal to yours.