Divide
(the distance covered in some period of time)
by
(the time taken to cover the distance).
The quotient is the average speed during that period of time.
Ruff's image is 50m behind the mirror surface and the image is also 3m tall.
This is because it is a plane mirror.
Answer:
d. Not enough information is given to answer this question.
Explanation:
From first law of thermodynamics
Q= W + ΔU
Q=Heat ,W= Work , ΔU=Change in internal energy
If work done by the gas :
It means that W and Q both are positive
Q- W = ΔU
Ii Q > W ,then temperature of the gas will increase.
If Q< W ,Then temperature of the gas will decreases.
If work done on the gas:
Q positive but W will be negative
Q- W = ΔU
Q= W or Q>W or Q< W ,then temperature of the gas will increase.
There are three cases because they did not give any information about the work.That is why option d is correct.
Answer:
The resultant velocity is 86.1 mi/h.
Explanation:
The law of cosines is given by:

Where:
c: is the resultant velocity =?
a: is the velocity of the plane = 75.0 mi/h
b: is the velocity of the wind = 15.0 mi/h
θ: is the angle between "a" and "b"
The angle between "a" and "b" can be found as follows:
Now, by using the law of cosines we have:

Therefore, the resultant velocity is 86.1 mi/h.
The law of sines is:

Where:
γ: is the angle between "b" and "c"
α: is the angle between "a" and "c"
So, if we want to find "c" by using the law of sines, we need to know another angle besides θ (γ or α), and the statement does not give us.
I hope it helps you!