I don't know sorry just google it
Answer:
9.4
Explanation:
The equation for the reaction can be represented as:
+
⇄ 
The ICE table can be represented as:
+
⇄ 
Initial 0.27 0.49 0.0
Change -x -2x x
Equilibrium 0.27 - x 0.49 -2x x
We can now say that the concentration of
at equilibrium is x;
Let's not forget that at equilibrium
= 0.11 M
So:
x = [
] = 0.11 M
[
] = 0.27 - x
[
] = 0.27 - 0.11
[
] = 0.16 M
[
] = (0.49 - 2x)
[
] = (0.49 - 2(0.11))
[
] = 0.49 - 0.22
[
] = 0.27 M
![K_C = \frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_C%20%3D%20%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)


= 9.4
∴ The equilibrium constant at that temperature = 9.4

dissolves in water to give

and

ions according to the following reaction:

-------->

+ 2

So, according to the above reaction, 1 mole of

produce 2 moles of

ion,
So, 0.3 mole will give = 0.3 x 2 = 0.6 moles of

ion
So, Molar concentration =

Note: 1L = 1000mL