Answer: none of the above
Explanation:
It should be 2,1,1,2 to give a balanced chemical reaction
They move fast enough to overcome the forces of attraction that hold them together, becoming a gas.
ITS THAT :)
Answer:
C
Explanation:
I hope this is correct and have a great day
Answer:
1) acetylide
2) enol
3) aldehydes
4) tautomers
5) alkynes
6) Hydroboration
7) Keto
8) methyl ketones
Explanation:
Acetylide anions (R-C≡C^-) is a strong nucleophile. Being a strong nucleophile, we can use it to open up an epoxide ring by SN2 mechanism. The attack of the acetylide ion occurs from the backside of the epoxide ring. It must attack at the less substituted side of the epoxide.
Oxomercuration of alkynes and hydroboration of alkynes are similar reactions in that they both yield carbonyl compounds that often exhibit keto-enol tautomerism.
The equilibrium position may lie towards the Keto form of the compound. Usually, if terminal alkynes are used, the product of the reaction is a methyl ketone.
Answer:
There are 6.022 × 1023 atoms of potassium in every mole of potassium. Since one mole of KOH contains one mole of K, the answer is 6.022×1023 atoms of K.
Explanation: