Answer: 996 mmHg
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at NTP, weighs equal to the molecular mass and contains avogadro's number
of particles.
According to the ideal gas equation:

P = Pressure of the gas = ?
V= Volume of the gas = 25.5 L
T= Temperature of the gas = 13°C = (273+13) K = 286K
R= Gas constant = 0.0821 atmL/K mol
n= moles of gas= 1.42
(760mmHg=1atm)
Thus pressure of this gas sample is 996 mm Hg.
Answer:

Explanation:
We must do the conversions
mass of C₆H₁₂O₆ ⟶ moles of C₆H₁₂O₆ ⟶ moles of CO₂ ⟶ volume of CO₂
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 180.16
C₆H₁₂O₆ + 6O₂ ⟶ 6CO₂ + 6H₂O
m/g: 24.5
(a) Moles of C₆H₁₂O₆

(b) Moles of CO₂

(c) Volume of CO₂
We can use the Ideal Gas Law.
pV = nRT
Data:
p = 0.960 atm
n = 0.8159 mol
T = 37 °C
(i) Convert the temperature to kelvins
T = (37 + 273.15) K= 310.15 K
(ii) Calculate the volume

Explanation:
hope it helps you understand moles
D, because C12 means there's 12 atoms of carbon.
Answer:
Equal volumes of SO2(g) and O2(g) at STP contain the same number of molecules
Explanation:
According to Avogadro Law,
Equal volume of all the gases at same temperature and pressure have equal number of molecules.
This law state that volume and number of moles of gas have direct relation.
When the amount of gas increases its volume will increase and when the amount of gas decreases its volume will decrease.
Mathematical relation:
V ∝ n
V/n = K
K is proportionality constant.
When number of moles change from n₁ to n₂ and volume from V₁ to V₂
expression will be,
V₁/n₁ = K , V₂/n₂ = K
V₁/n₁ = V₂/n₂