Answer:
If 700 g of water at 90 °C loses 27 kJ of heat, its final temperature is 106.125 °C
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
In this way, between heat and temperature there is a direct proportional relationship (Two magnitudes are directly proportional when there is a constant so that when one of the magnitudes increases, the other also increases; and the same happens when either of the two decreases .). The constant of proportionality depends on the substance that constitutes the body and its mass, and is the product of the specific heat and the mass of the body. So, the equation that allows to calculate heat exchanges is:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature, ΔT= Tfinal - Tinitial
In this case:
- Q= 27 kJ= 27,000 J (being 1 kJ=1,000 J)

- m=700 g
- ΔT= Tfinal - Tinitial= Tfinal - 90 °C
Replacing:

Solving:


16.125 °C= Tfinal - 90 °C
Tfinal= 16.125 °C + 90 °C
Tfinal= 106.125 °C
<u><em>If 700 g of water at 90 °C loses 27 kJ of heat, its final temperature is 106.125 °C</em></u>
Hydrochloric acid is usually purchased in a concentrated form that is 37.0% HCl by mass and has a density of 1.20g/mL. Calculate the molarity of the concd HCl.
1.20 g/mL x 1000 mL x 0.37 x (1/36.5) = about 12 M or so but you do it exactly.
Then mL x M = mL x M
mL x 12 M = 2800 mL x 0.475
Solve for mL of the concd HCl solution.
Following chemical reaction is involved upon titration of Ca(OH)2 with HCl,
Ca(OH)2 + 2HCl ↔ CaCL2 + 2H2O
Above is an example of acid-base titration to generate salt and water. Here, H+ ions of acid (HCl) combines with OH- (ions) of base [Ca(OH)2] to generated H2O
Given,
concentration of HCl = 0.0199 M
Total volume of HCl consumed during titration = 16.08 mL = 16.08 X 10^(-3) L
∴, number of moles of H+ consumed = Molarity X Vol. of HCl (in L)
= 0.0199 X 16.08 X 10^(-3)
= 3.1999 X 10^-4 mol
Thus, total number of moles of [OH-] ions present initial = 3.1999 X 10-4 mol
So, initial conc. [OH-] ion = ![\frac{number of moles of [OH-]}{volume of solution (L)}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bnumber%20of%20moles%20of%20%5BOH-%5D%7D%7Bvolume%20of%20solution%20%28L%29%7D%20)
=

= 0.03199 M
Answer:
fossil
Explanation:
the dead organism is called a fossil i think
Answer:
b. One electron state is an anti-bonding orbital, which results in an absence of electron density between atoms.
Explanation: