you will find your answer through this link
https://www.britannica.com/event/New-Deal
Answer:
i. The radius 'r' of the electron's path is 4.23 ×
m.
ii. The frequency 'f' of the motion is 455.44 KHz.
Explanation:
The radius 'r' of the electron's path is called a gyroradius. Gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field.
r = 
Where: B is the strength magnetic field, q is the charge, v is its velocity and m is the mass of the particle.
From the question, B = 1.63 ×
T, v = 121 m/s, Θ =
(since it enters perpendicularly to the field), q = e = 1.6 ×
C and m = 9.11 ×
Kg.
Thus,
r =
÷ sinΘ
But, sinΘ = sin
= 1.
So that;
r = 
= (9.11 ×
× 121) ÷ (1.6 ×
× 1.63 ×
)
= 1.10231 ×
÷ 2.608 × 
= 4.2266 ×
= 4.23 ×
m
The radius 'r' of the electron's path is 4.23 ×
m.
B. The frequency 'f' of the motion is called cyclotron frequency;
f = 
= (1.6 ×
× 1.63 ×
) ÷ (2 ×
× 9.11 ×
)
= 2.608 ×
÷ 5.7263 × 
= 455442.4323
f = 455.44 KHz
The frequency 'f' of the motion is 455.44 KHz.
Answer: the first answer is correct
Explanation:
she goes back to a stable feeling
Answer
given,
frequency from Police car= 1240 Hz
frequency of sound after return = 1275 Hz
Calculating the speed of the car = ?
Using Doppler's effect formula
Frequency received by the other car
..........(1)
u is the speed of sound = 340 m/s
v is the speed of the car
Frequency of the police car received

now, inserting the value of equation (1)


1.02822(340 - v) = 340 + v
2.02822 v = 340 x 0.028822
2.02822 v = 9.799
v = 4.83 m/s
hence, the speed of the car is equal to v = 4.83 m/s
Since we are working in one dimension (left right or East West), we don't need to worry about angles! It's just simply a matter of adding things up!
First list out all the forces and add negative (-ive) signs to each of the 'west' forces like this.
20 East + (-27 West) + ? = 10 East
so it's easy to see that 20 + (-27) = -7
So to get to 10 from -7 just do the sum to get 17.
Since 17 is not negative it must be in the direction of East.
So the answer is:
Magnitude = 17 N
Direction = toward the East