A simple way to go about this is that we look at the solubility curve, on the x axis we first look at the temperature and then the corresponding value of solute/100g H2O on the y axis, from the 4 curves above only NaNO3 has a curve that can accommodate 80g of salt at 40 without being Saturated since at 40 degrees it can accommodate 105g of salt to become completely Saturated.
The molar mass of CuCl2 is 134.45 g/mol; therefore, you divide 2.5 g of CuCl2 by 134.45 g of CuCl2 leaving you with 0.019 moles
Answer:
Well they didn't transfer any energy when they weren’t touching and it did t produce any energy if it didn’t move. Since they are on top of each other they are causing momentum on each other creating kinetic energy
Explanation:
Answer:
The pressure is 5.62 atm.
Explanation:
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= ?
- V= 5.005 L
- n= 1.255 mol
- R= 0.082

- T= 273.5 K
Replacing:
P* 5.005 L= 1.255 mol* 0.082
*273.5 K
Solving:

P= 5.62 atm
<u><em>The pressure is 5.62 atm.</em></u>
The answer is B) fills all the space in its container