1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
8

Explain an example of how energy is transferred from one form to another

Physics
1 answer:
scoray [572]3 years ago
6 0

Answer:

read the explanation

Explanation:

Purchased electricity is fed into our TVs and is converted to light and sound.

Electricity goes into an electric bulb and is converted to visible light and heat energy.

Chemical Energy is converted to Electrical Energy (stove)

Chemical food energy is converted to Energy to Work (person running).

You might be interested in
If the pendulum took longer to complete one oscillation, how would the graph change?
pickupchik [31]

We don't know what kind of graph it is.

For example, it might be a graph of the pendulum's distance from center,

angle from center, speed, acceleration, total distance swung since it was

started, mass, weight, temperature, etc.


If the graph shows the pendulum's distance from center, angle from center,

speed, or acceleration, then the graph will look like a wave, with the period

of the wave being the period of the pendulum's oscillation. If the pendulum

took longer to complete one oscillation, that means its PERIOD increased,

and the distance between the peaks of the graph would be longer.


If it was a graph of total distance the pendulum swung since it was started,

the graph wouldn't look like a wave, just a steadily rising wiggle line. If the

pendulum took longer to complete one oscillation, the wiggles in the line

would be farther apart, and the average slope of any large section of the

line would be less.


If it was a graph of the pendulum's mass, weight, temperature, cost, etc.,

then the graph would be a horizontal line, and nothing that might change

the period of oscillation would have any effect on the graph.

7 0
3 years ago
Read 2 more answers
The center of mass is
PolarNik [594]
D is the best answer. In many physics problems we treat an extended object as if it were a point with the same mass located at the center of mass.
5 0
3 years ago
Why can't there be a number lower than absolute zero
nexus9112 [7]

Absolute zero is not about numbers.  It's about temperature, and the
motion of molecules in gases. 

You know that the temperature we feel with our skin is the result of the
average speed of all the tiny molecules zipping around or vibrating in
the solid, liquid, or gas.

The faster they're all moving, the warmer the substance feels to us. 
The slower they're all moving, the cooler the substance feels to us.

When molecules slow down to zero and lose all of their kinetic energy,
that temperature is what we call 'absolute zero' ... if they're not moving
at all, then they can't move any slower.

5 0
3 years ago
Read 2 more answers
How fast much an 816kg Volkswagen travel to have the same momentum as (a) a 2650kg Cadillac going 16.0 km/h? (b) a 9080-kg truck
Katyanochek1 [597]

Answer:

Explanation:

From the given information:

the car's momentum = momentum of the truck

∴

(a) 816 kg × v = 2650 kg × 16.0 km/h

v = (2650 kg × 16.0 km/h) /  816 kg

v = 51.96 km/hr

(b) 816 kg × v = 9080 kg × 16.0 km/h

v = (9080 kg × 16.0 km/h) /  816 kg

v = 178.04 km/hr

8 0
3 years ago
A mass m attached to a horizontal massless spring with spring constant k, is set into simple harmonic motion. its maximum displa
Lesechka [4]
At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:
U_i= \frac{1}{2} ka^2
while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:
K_i =0
And the total energy of the system is
E_i = U_i+K= \frac{1}{2}ka^2

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:
U_f = 0
while the mass is moving at speed v, and therefore the kinetic energy is
K_f =  \frac{1}{2} mv^2
And the total energy is
E_f = U_f + K_f =  \frac{1}{2} mv^2

For the law of conservation of energy, the total energy must be conserved, therefore E_i = E_f. So we  can write
\frac{1}{2} ka^2 =  \frac{1}{2}mv^2
that we can solve to find an expression for v:
v= \sqrt{ \frac{ka^2}{m} }
6 0
3 years ago
Other questions:
  • A car traveled 1025 km from El Paso to Dallas iin 13.5 hr. What was its average velocity
    6·1 answer
  • If the atomic number of an atom is 4 and the mass number is 9, then how many electrons does it have
    10·1 answer
  • What is the main source of energy
    6·2 answers
  • If you go to columbiana middle put your real name
    5·2 answers
  • _____ replacement involves one element replacing another element in a compound.
    12·1 answer
  • How does the direction of friction relate to the direction of motion
    8·1 answer
  • Science fiction movies that include explosion sound effects for battles in space are not scientifically correct. Why is this?
    15·1 answer
  • 7. A stereo is able to convert 20% of its electrical energy into sound. If 1000 J of sound energy is produced, calculate the ele
    8·1 answer
  • Am 1 years old UwU (JK 15)
    10·1 answer
  • A small charge q is placed near a large spherical charge Q. The force experienced by both charges is F. The electric eld created
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!