Answer:
A) ω = 6v/19L
B) K2/K1 = 3/19
Explanation:
Mr = Mass of rod
Mb = Mass of bullet = Mr/4
Ir = (1/3)(Mr)L²
Ib = MbRb²
Radius of rotation of bullet Rb = L/2
A) From conservation of angular momentum,
L1 = L2
(Mb)v(L/2) = (Ir+ Ib)ω2
Where Ir is moment of inertia of rod while Ib is moment of inertia of bullet.
(Mr/4)(vL/2) = [(1/3)(Mr)L² + (Mr/4)(L/2)²]ω2
(MrvL/8) = [((Mr)L²/3) + (MrL²/16)]ω2
Divide each term by Mr;
vL/8 = (L²/3 + L²/16)ω2
vL/8 = (19L²/48)ω2
Divide both sides by L to obtain;
v/8 = (19L/48)ω2
Thus;
ω2 = 48v/(19x8L) = 6v/19L
B) K1 = K1b + K1r
K1 = (1/2)(Mb)v² + Ir(w1²)
= (1/2)(Mr/4)v² + (1/3)(Mr)L²(0²)
= (1/8)(Mr)v²
K2 = (1/2)(Isys)(ω2²)
I(sys) is (Ir+ Ib). This gives us;
Isys = (19L²Mr/48)
K2 =(1/2)(19L²Mr/48)(6v/19L)²
= (1/2)(36v²Mr/(48x19)) = 3v²Mr/152
Thus, the ratio, K2/K1 =
[3v²Mr/152] / (1/8)(Mr)v² = 24/152 = 3/19
Answer:
Final momentum after a head on collision is -2kgm/s
Explanation:
One ball moves to the right and the other moves opposite and momentum is a vector quantity so that considering the direction
Initial momenta are P₁=2x3=6kgm/s P₂=4x(-2)=-8kgm/s
Final momentum is the vector sum of P(final)= 6-8= -2 kgm/s
Answer:
1,323 days left
Explanation:
147 x 10 = 1,470
1470 - 147 = 1,323
Hopefully this helps you :)
pls mark brainlest ;)
A. the medium through which the light travels changes.
Explanation:
Light waves will continue to travel in a straight line in all directions from their source unless the medium through which the light travels changes.
A change in medium causes light to exhibit different properties. Also, when light hits an obstacle, they can be diffracted.
- The way light travels on crossing a boundary differs.
- At the boundary between two medium, light can either be reflected back or refracted when they cross the medium
- This will cause the light rays to bend towards or away from the normal depending on the properties of the medium.
Learn more:
Refraction brainly.com/question/12370040
#learnwithBrainly
A
Excitation to a higher energy state requires energy which is absorbed from the electromagnetic waves applied.