Explanation:
1. Force applied on an object is given by :
F = W = mg
(a) A 160 lb human being, F = 160 lb
g = acceleration due to gravity, g = 32 ft/s²


m = 5 kg
(b) A 1.9 lb cockatoo, F = 1.9 lb


m = 0.059 kg
2. (a) A 2300 kg rhinoceros, m = 2300 kg

(b) A 22 g song sparrow, m = 22 g = 0.022 kg

Hence, this is the required solution.
Answer:
n = 4 x 10¹⁸ photons
Explanation:
First, we will calculate the energy of one photon in the radiation:

where,
E = Energy of one photon = ?
h = Plank's Constant = 6.625 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of radiation = 567 nm = 5.67 x 10⁻⁷ m
Therefore,

E = 3.505 x 10⁻¹⁹ J
Now, the number of photons to make up the total energy can be calculated as follows:

<u>n = 4 x 10¹⁸ photons</u>
Answer:
Explanation:
Given
Force of repulsion between two charge particle is given by force F
Electrostatic force is given by

where
and
is the charges of particle
r=distance between charge particle
when charges are doubled and distance is reduced to half
i.e. q become 2 q and r becomes 0.5 r



Answer:
Explanation:
1 ha = 10⁴ m²
1375 ha = 1375 x 10⁴ m² = 13.75 x 10⁶ m²
In flow in a month = .5 x 10⁶ x 30 m³ = 15 x 10⁶ m³
Net inflow after all loss = 18.5 - 9.5 - 2.5 cm = 6.5 cm = .065 m
Net inflow in volume = 13.75 x 10⁶ x .065 m³= .89375 x 10⁶ m³
Let Q be the withdrawal in m³
Q - 15 x 10⁶ - .89375 x 10⁶ = 13.75 x 10⁶ x .75 = 10.3125 x 10⁶
Q = 26.20 x 10⁶ m³
rate of withdrawal per second
= 26.20 x 10⁶ / 30 x 24 x 60 x 60
= 26.20 x 10⁶ / 2.592 x 10⁶
= 10.11 m³ / s
The formula we need to use is displacement.
, where xf is final position and xi is initial position.
We report the final position of 5 and the displacement of 2 so the formula is now:
.
So the initial position of truck A is 3.
Hope this helps.
r3t40