1.Use the balance to find the mass of the object. Record the value on the "Density Data Chart."
2.Pour water into a graduated cylinder up to an easily-read value, such as 50 milliliters and record the number.
3.Drop the object into the cylinder and record the new value in millimeters.
4.The difference between the two numbers is the object's volume. Remember that 1 milliliter is equal to 1 cubic centimeter. Record the volume on the data chart.
5.Compute the density of the object by dividing the mass value by the volume value. Record the density on the data chart.
Answer:
ω = 630.2663 = 630[rad/s]
Explanation:
Solution:
- We can tackle this question by simple direct proportion relation between angular speed for the disk to rotate a cycle that constitutes 20 holes. We will use direct relation with number of holes per cycle to compute the revolution per seconds i.e frequency of speed f.
1rev(20 hole) -> 20(cycle)/rev
2006.2(cycle) -> f ?
f = 2006.2/20 = 100.31rev at second
- The relation between angular frequency and angular speed is given by:
ω = 2πf
ω = 2*3.14*100.31
ω = 630.2663 = 630[rad/s]
Energy is the capacity to do some type of work
False
Energy in the form of motion is kinetic energy
Stored energy is called potential energy
Answer:
m = 1 kg
Explanation:
Given that,
The force constant of the spring, k = 39.5 N/m
The frequency of oscillation, f = 1 Hz
The frequency of oscillation is given by the formula as formula as follows :

So, the mass that is attached to the spring is 1 kg.