speed, volume, mass, temperature and power
Answer:(a)9.685 mm
(b)4.184 mm
Explanation:
Given
Wavelength of light 
Width of slit(b)=0.210
(a)Width of central maximum located 1.80m from slit


=9.685 mm
(b)Width of the first order bright fringe



Answer:
The first minimum would be observed at 41.57°
Explanation:
v = 340m/s = speed of sound
f = 610Hz
d = 0.840m
λ = ?
Mλ = wsinθ
m = mth order minima
λ = wavelength incident on the single slit
θ = angular position of the mth minima
But, λ = v / f
λ = 340 / 610 = 0.557m
θ = sin⁻(mλ/d)
θ = sin⁻ [(1 * 0.557) / 0.840]
θ = sin⁻ 0.6635
θ = 41.57°
The first minimum would be observed at 41.57°
Answer: d. I or II
Explanation: A traveling wave has speed that depends on characteristics of a medium. Characteristics like linear density (μ), which is defined as mass per length.
Tension or Force (
) is also related to the speed of a moving wave.
The relationship between tension and linear density and speed is ginve by the formula:

So, for the traveling waves generated on a string fixed at both ends described above, ways to increase wave speed would be:
1) Increase Tension and maintaining mass and length constant;
2) Longer string will decrease linear density, which will increase wave speed, due to their inversely proportional relationship;
Then, ways to increase the wave speed is
I. Using the same string but increasing tension
II. Using a longer string with the same μ and T.
Answer:
Balanced.
Explanation:
A Balanced Chemical equation is a scientific term that describes a chemical equation that has the same number of atoms on each side of the equation.
Hence, when the number of atoms on the right side of a chemical equation matches the number of atoms on the left side of a chemical equation, it is said to be BALANCED.