F = G*((m sub 1*m sub 2)/r^2)
Well I’m not sure because you don’t have anything listed
Inertia- a tendency to do nothing or to remain unchanged
Answer:
hello your question lacks some data and required diagram
G = 77 GPa, т all = 80 MPa
answer : required diameter = 252.65 * 10-^3 m
Explanation:
Given data :
force ( P ) = 660 -N force
displacement = 15 mm
G = 77 GPa
т all = 80 MPa
i) Determine the required diameter of shaft BC
considering the vertical displacement ( looking at handle DC from free body diagram )
D' = 0.3 sin∅ , where D = 0.015
hence ∅ = 2.8659°
calculate the torque acting at angle ∅ of CD on the shaft BC
Torque = 660 * 0.3 cos∅
= 660 * 0.3 * cos 2.8659 = 198 * -0.9622 = 190.5156 N
hello attached is the remaining part of the solution
Answer : The final pressure in the two containers is, 2.62 atm
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

Thus, the expression for final pressure in the two containers will be:


where,
= pressure of N₂ gas = 4.45 atm
= pressure of Ar gas = 2.75 atm
= volume of N₂ gas = 3.00 L
= volume of Ar gas = 2.00 L
P = final pressure of gas = ?
V = final volume of gas = (4.45 + 2.75) L = 7.2 L
Now put all the given values in the above equation, we get:


Thus, the final pressure in the two containers is, 2.62 atm