Answer:

Explanation:
We know that from Newton's second law of motion, F=ma hence making acceleration the subject then
where a is acceleration, F is force and m is mass
Also making mass the subject of the formula 
For
and
hence 
If the bag is motionless, then it's not accelerating up or down.
That fact right there tells you that the net vertical force on it
is zero. So the sum of any upward forces on it is exactly equal
to the downward gravitational force ... the bag's "weight".
If the bag is suspended from a single rope, then the tension
in the rope must be equal to the 100-N weight of the bag.
And if there are four ropes holding it up, then the sum of
the four tensions is 100N. If the ropes have been carefully
adjusted to share the load equally, then the tension is 25N
in each rope.
Three climate zones which are polar, temperate, and tropical. hope this helps
The force applied would be 1.05*9.8 = 10.3 N
the pressure is equal to F/a
area will be πr^2 = 0.002826
thus pressure will be = 10.3/0.002826= 3644.72 N/m^2
Answer: The common difference between surface EMG and intramuscular EMG is that that former is non-invasive while the later is an invasive method
Explanation:
Electromyography (EMG) is used clinically for the examination of muscle excitations (muscle electrical activity) in both normal or abnormal conditions. There are two forms of EMG includes:
--> Surface EMT and
--> Intramuscular EMT
Surface EMT is a non invasive method of examination of muscle excitations for superficial and easily accessible muscles.
Intramuscular EMT is the invasive method of examination of muscle excitations usually for deep muscles.
The difference between the two forms of EMT includes:
- surface EMT is non- invasive while intramuscular EMT is invasive
- surface EMT is used to access superficial muscle while intramuscular EMT is used to access deep muscles.
- surface EMT requires less skill and time to carry out while intramuscular EMT requires special skills and takes more time while carrying out the procedure.