Volume<span> of matter </span>decreases<span> under </span>pressure<span> ... -under </span>pressure<span>, the </span>particles<span> in a </span>gas<span> are </span>forced closer together<span> ... </span>factors<span> affecting </span>gas pressure<span> ... -</span>if pressure<span> in a sealed container is </span>lower than<span> outside, </span>gas will<span> rush in ...</span>
Answer:
a) Aqueous LiBr = Hydrogen Gas
b) Aqueous AgBr = solid Ag
c) Molten LiBr = solid Li
c) Molten AgBr = Solid Ag
Explanation:
a) Aqueous LiBr
This sample produces Hydrogen gas, because the H+ (conteined in the water) has a reduction potential higher than the Li+ from the salt. Therefore the hydrogen cation will reduce instead of the lithium one and form the gas.
b) Aqueous AgBr
This sample produces Solid Ag, because the Ag+ has a reduction potential higher than the H+ from the water. Therefore the silver cation will reduce instead of the hydrogen one and form the solid.
c) Molten LiBr
In a molten binary salt like LiBr there is only one cation present in the cathod. In this case the Li+, so it will reduce and form solid Li.
c) Molten AgBr
The same as the item above: there is only one cation present in the cathod. In this case the Ag+, so it will reduce and form solid Ag.
<span>some elements would be Beryllium, Barium, Magnesium, and Strontium</span>
Hydrogen bonds.
________________