Answer:
In combination, the equatorial bulge and the effects of the surface centrifugal force due to rotation mean that sea-level gravity increases from about 9.780 m/s2 at the Equator to about 9.832 m/s2 at the poles, so an object will weigh approximately 0.5% more at the poles than at the Equator.
Answer:
a) = 258352.5J
b) = 23.63 m/s
c) = 1.8m
Explanation:
Data;
Mass = 925kg
Distance (s) = 28.5m
Force constant (k) = 8.0*10⁴ N/m
g = 9.8 m/s²
a) = work = force * distance
But force = mass * acceleration
Force = 925 * 9.8 = 9065N
Work = F * s = 9065 * 28.5 = 258352.5J
b) acceleration (a) = (v² - u²) / 2s
a = v² / 2s
v² = a * 2s
v² = 9.8 * (2 * 28.5)
v² = 9.8 * 57
v² = 558.6
v = √(558.6)
V = 23.63 m/s
C). The work stops when the work done to raise the spring equals the work done to stop it by the spring
W = ½kx²
258352.5 = ½ * 8.0*10⁴ * x²
(2 * 258352.5) = 8.0*10⁴x²
516705 = 8.0*10⁴x²
X² = 516705 / 8.0*10⁴
X² = 6.46
X = √(6.46)
X = 2.54m
The compression was about 2.54m
Answer:
6.57 m/s
Explanation:
First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement
F=kx; F=180(.3) = 54 N
Next from Newton's second law find the acceleration of the mass.
Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²
Now use the kinematic equation for velocity (or speed)
v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.
v₀=0, since the mass is at rest before we release it
a=72 m/s² (from above)
x₀=0 as the start position already compressed
x₂=0.3m (this puts the spring back to it's natural length)
v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²
v₂=
= 6.57 m/s
It is gravity¿ what is the question?