In the given problem, we say various information's that are going to help us reach the ultimate answer to the question. Let us first write the information's that have been presented in front of us.
Mass of the car = 2000 kg
Velocity of the car = 25 m/s^2
Radius of the circle = 80 m
Now we already know the equation for calculating the centripetal force and that is
Centripetal Force = [mass * (velocity)^2]/Radius
= [2000 * (25)^2]/80
= (2000 * 625)/80
= 1250000/80
= 15625
So the centripetal force on the car is 15625 Newtons
Answer:
Momentum is always conserved, and kinetic energy may be conserved.
Explanation:
For an object moving on a horizontal, frictionless surface which makes a glancing collision with another object initially at rest on the surface, the type of collision experienced by this objects can either be elastic or an inelastic collision depending on whether the object sticks together after collision or separates and move with a common velocity after collision.
If the body separates and move with a common velocity after collision, the collision is elastic but if they sticks together after collision, the collision is inelastic.
Either ways the momentum of the bodies are always conserved since they will always move with a common velocity after collision but their kinetic energy may or may not be conserved after collision, it all depends whether they separates or stick together after collision and since we are not told in question whether or not they separate, we can conclude that their kinetic energy "may" be conserved.
<span>a) 1960 m
b) 960 m
Assumptions.
1. Ignore air resistance.
2. Gravity is 9.80 m/s^2
For the situation where the balloon was stationary, the equation for the distance the bottle fell is
d = 1/2 AT^2
d = 1/2 9.80 m/s^2 (20s)^2
d = 4.9 m/s^2 * 400 s^2
d = 4.9 * 400 m
d = 1960 m
For situation b, the equation is quite similar except we need to account for the initial velocity of the bottle. We can either assume that the acceleration for gravity is negative, or that the initial velocity is negative. We just need to make certain that the two effects (falling due to acceleration from gravity) and (climbing due to initial acceleration) counteract each other. So the formula becomes
d = 1/2 9.80 m/s^2 (20s)^2 - 50 m/s * T
d = 1/2 9.80 m/s^2 (20s)^2 - 50m/s *20s
d = 4.9 m/s^2 * 400 s^2 - 1000 m
d = 4.9 * 400 m - 1000 m
d = 1960 m - 1000 m
d = 960 m</span>
The answer of a & b are force of cohesion and force of adhesion
Of rest two answers I don't know