1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xenn [34]
3 years ago
11

Interactive Solution 6.39 presents a model for solving this problem. A slingshot fires a pebble from the top of a building at a

speed of 20.0 m/s. The building is 25.0 m tall. Ignoring air resistance, find the speed with which the pebble strikes the ground when the pebble is fired (a) horizontally, (b) vertically straight up, and (c) vertically straight down.
Physics
1 answer:
mariarad [96]3 years ago
7 0

(a) 29.8 m/s

To solve this problem, we start by analyze the vertical motion first. This is a free fall motion, so we can use the following suvat equation:

v_y^2 - u_y^2 = 2as

where, taking upward as positive direction:

v_y is the final vertical velocity

u_y = 0 is the initial vertical velocity (zero because the pebble is launched horizontally)

a=g=-9.8 m/s^2 is the acceleration of gravity

s = -25.0 m is the displacement

Solving for vy,

v_y = \sqrt{u^2+2as}=\sqrt{0+2(-9.8)(-25)}=-22.1 m/s (downward, so we take the negative solution)

The pebble also have a horizontal component of the velocity, which remains constant during the whole motion, so it is

v_x = 20.0 m/s

So, the final speed of the pebble as it strikes the ground is

v=\sqrt{v_x^2+v_y^2}=\sqrt{20.0^2+(-22.1)^2}=29.8 m/s

(b) 29.8 m/s

In this case, the pebble is launched straight up, so its initial vertical velocity is

u_y = 20.0 m/s

So we can find the final vertical velocity using the same suvat equation as before:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

The horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

(c) 29.8 m/s

This case is similarly to the previous one: the only difference here is that the pebble is launched straight down instead than up, therefore

u_y = -20.0 m/s

Using again the same suvat equation:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(-20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

As before, the horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

We notice that the final value of the speed is always the same in all the three parts, so it does not depend on the direction of launching. This is due to the law of conservation of energy: in fact, the initial mechanical energy of the pebble (kinetic+potential) is the same in all three cases (because the height h does not change, and the speed v does not change either), and the kinetic energy gained during the fall is also the same (since the pebble falls the same distance in all 3 cases), therefore the final speed must also be the same.

You might be interested in
What is the reaction force to a foot pushing down on the floor?
Helga [31]

Answer:

C. The floor pushing back against the foot​

Explanation:

5 0
3 years ago
Read 2 more answers
The question is in the picture. :)
NISA [10]
Player A needs the least amount of energy. The ball is light weight and she is closest to the goal so the momentum need to kick the ball will be the least and the distance is has to travel is the shortest. But player C needs the most amount of energy. The ball is heavy so it will take the most momentum to move the ball and over such a long distance. Hope this help idrk.
5 0
3 years ago
What is the role of the neutral wire
lions [1.4K]

Answer:

The neutral wire is often confused with ground wire, but in reality, they serve two distinct purposes. Neutral wires carry currents back to power source to better control and regulate voltage. Its overall purpose is to serve as a path to return energy.

5 0
3 years ago
An echo is not heard in a small room.why ? give reason<br>​
JulsSmile [24]

Answer:

They can't hear an echo in small room because in it the sound can't be reflected back. For an echo of a sound to be heard,the minimum distance between the source of sound and the walls of the room should be 17.2 m.

hopw it helps

7 0
3 years ago
Read 2 more answers
Martine also has an eraser.it has a mass of 3g,and a volume if 1cm3.what is its density
shtirl [24]

Answer:

3g/cm³

Explanation:

<em>Use the formula:</em>

density = mass ÷ volume

<em>Substitute (plug in) the values:</em>

density = 3 ÷ 1 = 3g/cm³

4 0
3 years ago
Other questions:
  • A 25 N force at 60° is required to set a crate into motion on a floor. What is the value of the static friction?
    13·1 answer
  • A 58-kg boy swings a baseball bat, which causes a 0.140-kg baseball to move toward 3rd base with a velocity of 38.0 m/s.
    6·1 answer
  • Explain how an increase or decrease in the permeability (i.e. opening or closing channels permeable) to K+, Na+, Ca2+, or Cl- wo
    11·1 answer
  • Which electromagnetic wave types have frequencies higher than visible light?
    11·2 answers
  • A capacitor consists of two parallel conducting plates, each of area 0.4 m2 and separated by a distance of 2.0 cm. Assume there
    5·1 answer
  • Example 4.4
    13·1 answer
  • Researchers have found that the larvae of all North American firefly species glow as a warning sign to ward off predators. Howev
    13·1 answer
  • Fill in the blank for the following statement: Physical weathering is the ________.
    11·2 answers
  • ONLY ANSWER IF YOU KNOW FOR SURE PLEASE :)
    13·1 answer
  • Why does the periodic table work?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!