1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xenn [34]
3 years ago
11

Interactive Solution 6.39 presents a model for solving this problem. A slingshot fires a pebble from the top of a building at a

speed of 20.0 m/s. The building is 25.0 m tall. Ignoring air resistance, find the speed with which the pebble strikes the ground when the pebble is fired (a) horizontally, (b) vertically straight up, and (c) vertically straight down.
Physics
1 answer:
mariarad [96]3 years ago
7 0

(a) 29.8 m/s

To solve this problem, we start by analyze the vertical motion first. This is a free fall motion, so we can use the following suvat equation:

v_y^2 - u_y^2 = 2as

where, taking upward as positive direction:

v_y is the final vertical velocity

u_y = 0 is the initial vertical velocity (zero because the pebble is launched horizontally)

a=g=-9.8 m/s^2 is the acceleration of gravity

s = -25.0 m is the displacement

Solving for vy,

v_y = \sqrt{u^2+2as}=\sqrt{0+2(-9.8)(-25)}=-22.1 m/s (downward, so we take the negative solution)

The pebble also have a horizontal component of the velocity, which remains constant during the whole motion, so it is

v_x = 20.0 m/s

So, the final speed of the pebble as it strikes the ground is

v=\sqrt{v_x^2+v_y^2}=\sqrt{20.0^2+(-22.1)^2}=29.8 m/s

(b) 29.8 m/s

In this case, the pebble is launched straight up, so its initial vertical velocity is

u_y = 20.0 m/s

So we can find the final vertical velocity using the same suvat equation as before:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

The horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

(c) 29.8 m/s

This case is similarly to the previous one: the only difference here is that the pebble is launched straight down instead than up, therefore

u_y = -20.0 m/s

Using again the same suvat equation:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(-20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

As before, the horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

We notice that the final value of the speed is always the same in all the three parts, so it does not depend on the direction of launching. This is due to the law of conservation of energy: in fact, the initial mechanical energy of the pebble (kinetic+potential) is the same in all three cases (because the height h does not change, and the speed v does not change either), and the kinetic energy gained during the fall is also the same (since the pebble falls the same distance in all 3 cases), therefore the final speed must also be the same.

You might be interested in
How do you find distance from average velocity and time
AlekseyPX

Answer:

Calculate the total distance travelled by the object - its motion is represented by the velocity-time graph below.

Here, the distance travelled can be found by calculating the total area of the shaded sections below the line.

½ × base × height.

½ × 4 × 8 = 16 m 2

(10 – 4) × 8 = 48 m 2

Explanation:

7 0
2 years ago
A tennis ball is dropped from a height of 3 m and bounces back to a height of
julsineya [31]

Answer:

To decide where the balls land, we need to determine how long the balls are in the air. Both balls will take 2 seconds to hit the ground.

Explanation:

1) Time played forward : gravity & drag forces are in opposite directions so it takes a longer time to reach the ground. 2) Time played backward : gravity & drag forces are in the same direction so it takes a shorter time to reach the ground.

5 0
2 years ago
Assume the radius of an atom, which can be represented as a hard sphere, is r = 1.95 Å. The atom is placed in a (a) simple cubic
Nuetrik [128]

Answer:

(a) A = 3.90 \AA

(b) A = 4.50 \AA

(c) A = 5.51 \AA

(d) A = 9.02 \AA

Solution:

As per the question:

Radius of atom, r = 1.95 \AA = 1.95\times 10^{- 10} m

Now,

(a) For a simple cubic lattice, lattice constant A:

A = 2r

A = 2\times 1.95 = 3.90 \AA

(b) For body centered cubic lattice:

A = \frac{4}{\sqrt{3}}r

A = \frac{4}{\sqrt{3}}\times 1.95 = 4.50 \AA

(c) For face centered cubic lattice:

A = 2{\sqrt{2}}r

A = 2{\sqrt{2}}\times 1.95 = 5.51 \AA

(d) For diamond lattice:

A = 2\times \frac{4}{\sqrt{3}}r

A = 2\times \frac{4}{\sqrt{3}}\times 1.95 = 9.02 \AA

6 0
2 years ago
You climb to the top of a ladder. You drop a a ball from height H, it reaches the ground with speed V if there is no air resista
olchik [2.2K]

Answer:

heymelissa its amanda i hate ms spearman

Explanation:

yuh

6 0
3 years ago
Explain the process of synaptic transmission, beginning with the neurotransmitters at the axon terminal of the presynaptic cell
nydimaria [60]

The synapse is actually the link between 2 neurons. Now when an action potential contacts the synaptic knob of a neuron, the voltage-gate calcium channels are unlocked, resulting in an influx of positively charged calcium ions into the cell. This makes the vesicles containing neurotransmitters, for example acetylcholine, to travel towards the pre-synaptic membrane. When the vesicle arrives at the membrane, the contents are released into the synaptic cleft by exocytosis. Neurotransmitters disperse across the space, down to its concentration gradient, up until it reaches the post-synaptic membrane, where it connects to the correct neuroreceptors. Connecting to the neuroreceptors results in depolarisation in the post-syanaptic neuron as voltage-gated sodium channels are also opened, and the positively charged sodium ions travel into the cell. When adequate neurotransmitters bind to neuroreceptors, the post-synaptic membrane overcame the threshold level of depolarisation and an action potential is made and the impulse is transmitted.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Explain why is not advisable to use small values of I in performing an experiment on refraction through a glass prism?
    14·2 answers
  • What's a broad flat volcano created by quiet eruptions
    13·1 answer
  • Question:
    7·1 answer
  • An unfortunate 18 kg monkey falls from a 40 m tall tree. What is the monkeys final velocity just befor he impacts the ground.? a
    11·1 answer
  • the weatherman reports the storm waves are about 2 meters high and 35 meters apart. What properties of waves is the reporter des
    6·1 answer
  • When you push a toy car it eventually stops this is due to something called
    15·1 answer
  • How are you progressing towards the goals you set for yourself? What do you need to keep on track?
    12·2 answers
  • A sledgehammer hits a wall. How do the hammer and the wall act on each other? (1 point)
    12·1 answer
  • A 35 kg object has -450 kgm/s of momentum. Calculate its velocity.
    14·1 answer
  • How many excess electrons must be distributed uniformly within the volume of an isolated plastic sphere 26.0 cm in diameter to p
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!