1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xenn [34]
3 years ago
11

Interactive Solution 6.39 presents a model for solving this problem. A slingshot fires a pebble from the top of a building at a

speed of 20.0 m/s. The building is 25.0 m tall. Ignoring air resistance, find the speed with which the pebble strikes the ground when the pebble is fired (a) horizontally, (b) vertically straight up, and (c) vertically straight down.
Physics
1 answer:
mariarad [96]3 years ago
7 0

(a) 29.8 m/s

To solve this problem, we start by analyze the vertical motion first. This is a free fall motion, so we can use the following suvat equation:

v_y^2 - u_y^2 = 2as

where, taking upward as positive direction:

v_y is the final vertical velocity

u_y = 0 is the initial vertical velocity (zero because the pebble is launched horizontally)

a=g=-9.8 m/s^2 is the acceleration of gravity

s = -25.0 m is the displacement

Solving for vy,

v_y = \sqrt{u^2+2as}=\sqrt{0+2(-9.8)(-25)}=-22.1 m/s (downward, so we take the negative solution)

The pebble also have a horizontal component of the velocity, which remains constant during the whole motion, so it is

v_x = 20.0 m/s

So, the final speed of the pebble as it strikes the ground is

v=\sqrt{v_x^2+v_y^2}=\sqrt{20.0^2+(-22.1)^2}=29.8 m/s

(b) 29.8 m/s

In this case, the pebble is launched straight up, so its initial vertical velocity is

u_y = 20.0 m/s

So we can find the final vertical velocity using the same suvat equation as before:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

The horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

(c) 29.8 m/s

This case is similarly to the previous one: the only difference here is that the pebble is launched straight down instead than up, therefore

u_y = -20.0 m/s

Using again the same suvat equation:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(-20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

As before, the horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

We notice that the final value of the speed is always the same in all the three parts, so it does not depend on the direction of launching. This is due to the law of conservation of energy: in fact, the initial mechanical energy of the pebble (kinetic+potential) is the same in all three cases (because the height h does not change, and the speed v does not change either), and the kinetic energy gained during the fall is also the same (since the pebble falls the same distance in all 3 cases), therefore the final speed must also be the same.

You might be interested in
What is the function of layer of air trapped under the hovercraft​
aev [14]

Answer:b

Explanation:

3 0
3 years ago
Fill in the blanks for the following:
storchak [24]

Answer:

<em>a. 4.21 moles</em>

<em>b. 478.6 m/s</em>

<em>c. 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>

Explanation:

Volume of container = 100.0 L

Temperature = 293 K

pressure = 1 atm = 1.01325 bar

number of moles n = ?

using the gas equation PV = nRT

n = PV/RT

R = 0.08206 L-atm-mol^{-1}K^{-1}

Therefore,

n = (1.01325 x 100)/(0.08206 x 293)

n = 101.325/24.04 = <em>4.21 moles</em>

The equation for root mean square velocity is

Vrms = \sqrt{\frac{3RT}{M} }

R = 8.314 J/mol-K

where M is the molar mass of oxygen gas = 31.9 g/mol = 0.0319 kg/mol

Vrms = \sqrt{\frac{3*8.314*293}{0.0319} }= <em>478.6 m/s</em>

<em>For Nitrogen in thermal equilibrium with the oxygen, the root mean square velocity of the nitrogen will be proportional to the root mean square velocity of the oxygen by the relationship</em>

\frac{Voxy}{Vnit} = \sqrt{\frac{Mnit}{Moxy} }

where

Voxy = root mean square velocity of oxygen = 478.6 m/s

Vnit = root mean square velocity of nitrogen = ?

Moxy = Molar mass of oxygen = 31.9 g/mol

Mnit = Molar mass of nitrogen = 14.00 g/mol

\frac{478.6}{Vnit} = \sqrt{\frac{14.0}{31.9} }

\frac{478.6}{Vnit} = 0.66

Vnit = 0.66 x 478.6 = <em>315.876 m/s</em>

<em>the root mean square velocity of the oxygen gas is </em>

<em>478.6/315.876 = 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>

6 0
2 years ago
If you are following a car and also being tailgated by another vehicle, your best option would be to.. a. Increase the following
Pie

Answer:

Your answer here is D

Explanation:

Slowly pressing your breaks will help ensure you are not hit by the other car. If they hit you its their fault. Hope this helps :)!

7 0
2 years ago
Read 2 more answers
A spring with force constant of 59 N/m is compressed by 1.3 cm in a hockey game machine. The compressed spring is used to accele
Furkat [3]

Answer:

The puck moves a vertical height of 2.6 cm before stopping

Explanation:

As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.

So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.

Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So

1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².

Substituting the kinetic energy of the puck for the potential energy of the spring, we have

1/2kx² = mgh

h = kx²/2mg

= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)

= 0.009971 Nm/0.38416 N

= 0.0259 m

= 2.59 cm

≅ 2.6 cm

So the puck moves a vertical height of 2.6 cm before stopping

3 0
3 years ago
Consider a well-insulated rigid container with two chambers separated by a membrane. The total volume is 5.0 cubic meters. The f
mamaluj [8]

Answer:

The Entropy generated by the steam = 2.821 kJ/K

Explanation:

Total volume of container = 5m³

Heat transfer does not exist between system and surrounding, dQ = 0

At the first chamber, temperature of water at saturated liquid is 300°C

From the steam table:

Specific enthalpy of saturated liquid at 300°C , h_{f} = 1344.8 kJ/kg

Specific internal energy of saturated liquid at 300°C, U_{f1} =  1332.7 kJ/kg

For closed system, the first law of thermodynamics state that:

dQ = dw + dU..................(1)

work done for free expansion, dw =0

0 = 0 + dU

dU = 0 , i.e. U₁ = U₂

At the second chamber,

The final pressure, P₂ = 50 kPa

From the steam table, at P₂ = 50 kPa,  U_{f2} = 340.49 kJ/kg

(U_{fg} )_{2} =  2142.7 kJ/kg

Let the dryness fraction at the second chamber = x

U_{2} = U_{f2} + U_{fg2}

U_{2} = 340.49 + x2140.7Since U₁ = U₂

1332.7 = 340.49 + x2140.7

Dryness fraction, x = 0.463

From steam table, the specific volume is, u_{f2} = 0.00103 m^{3} /kg\\

u_{2} = u_{f2} + xu_{fg2}

u_{2} = 0.00103 + 0.463(3.2393)\\u_{2} = 1.5 m^{3} /kg\\

u_{2} = \frac{v_{2} }{m_{2} }

V₂ = 5 m³

1.5 = 5/m₂

m₂ = 3.33 kg

At 300°C S_{1} = S_{f} = 3.2548 kJ/kg-k\\

S_{2} = S_{f2} + xS_{fg2}

From the steam table,

S_{f2} = 1.0912 kJ/kg-k\\S_{fg2} = 6.5019 kJ/kg-k\\S_{2} = 1.0912 + 0.463(6.5019)\\S_{2} = 4.102 kJ/kg-k

Therefore the entropy generated will be :

Entropy = mass* (S₂ - S₁)

Entropy = 3.33* (4.102 - 3.2548)

Entropy = 2.821 kJ/K

5 0
3 years ago
Read 2 more answers
Other questions:
  • An electric current is created in a long thin wire. How will increasing the current and changing the direction of the current ef
    6·2 answers
  • Which is an example of a physical change? wood rots. gasoline ignites. water evaporates. a nail rusts. description?
    9·2 answers
  • Most people can hear sound of pitch raning from to hertz​
    12·1 answer
  • Which are causes of desertification?
    13·2 answers
  • 14. Three identical light bulbs are connected in series, then are disconnected and arranged in parallel. For each of the scenari
    5·1 answer
  • Which of the following statements is TRUE for high-visibility clothing? A. High-visibility clothing helps to reduce insect probl
    11·2 answers
  • What is the amplitude of an AC voltage waveform, in units of Volts, if the RMS value is 369 V?
    7·1 answer
  • A satellite is launched to orbit the Earth at an altitude of 2.90 x10^7 m for use in the Global Positioning System (GPS). Take t
    7·1 answer
  • The small spherical planet called "Glob" has a mass of 7.88×10^18 kg and a radius of 6.32×10^4 m. An astronaut on the surface of
    13·2 answers
  • 16. PHYSICS The height h of a falling object is given by h = vt - gt2, where vis the initial velocity of the object, t is time,
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!