A. Sound B will be louder than sound A
B. Sound C will be louder than sound A
C. Sound B
D. Sound C
Plz mark as brainleast plzzz
Answer:
841.5 Hz
Explanation:
Given
y = 50 cm = 0.5 m
d = 5.00 m
L = 12.0 m away from the wall
v = speed of sound = 343 m/s
The image of the scenario is presented in the attached image.
When destructive interference is being experienced from 50 cm (0.5 m) parallel to the wall, the path difference between the distance of the two speakers from the observer is equal to half of the wavelength of the wave.
Let the distance from speaker one to the observer's new position be d₁
And the distance from the speaker two to the observer's new position be d₂
(λ/2) = |d₁ - d₂|
d₁ = √(12² + 3²) = 12.3693 m
d₂ = √(12² + 2²) = 12.1655 m
|d₁ - d₂| = 0.2038 m
(λ/2) = |d₁ - d₂| = 0.2038
λ = 0.4076 m
For waves, the velocity (v), frequency (f) and wavelength (λ) are related thus
v = fλ
f = (v/λ) = (343/0.4076) = 841.5 Hz
Hope this Helps!!!
OK.
But first we need to know . . .
-- Where is Riverdale ?
-- What is the air temperature there right now ?
-- What kind of system is being used now ?
-- Where can we get a complete description of the groundwater system ?
Answer:
8.2 m/s²
Explanation:
m = mass of the block
μ = Coefficient of kinetic friction = 0.17
= Normal force on the block by the ramp
= kinetic frictional force
Force equation perpendicular to ramp surface is given as

Kinetic frictional force is given as


Force equation parallel to ramp surface is given as




m/s²