<h3>1</h3>
Species shown in bold are precipitates.
- Ca(NO₃)₂ + 2 KOH → Ca(OH)₂ + 2 KNO₃
- Ca(NO₃)₂ + Na₂C₂O₄ → CaC₂O₄ + 2 NaNO₃
- Cu(NO₃)₂ + 2 KI → CuI₂ + 2 KI
- Cu(NO₃)₂ + 2 KOH → Cu(OH)₂ + 2 KNO₃
- Cu(NO₃)₂ + Na₂C₂O₄ → CuC₂O₄ + 2 NaNO₃
- Ni(NO₃)₂ + 2 KOH → Ni(OH)₂ + 2 KNO₃
- Ni(NO₃)₂ + Na₂C₂O₄ → NiC₂O₄ + 2 NaNO₃
- Zn(NO₃)₂ + 2 KOH → Zn(OH)₂ + 2 KNO₃
- Zn(NO₃)₂ + Na₂C₂O₄ → ZnC₂O₄ + 2 NaNO₃
<h3>2</h3>
A double replacement reaction takes place only if it reduces in the concentration of ions in the solution. For example, the reaction between Ca(NO₃)₂ and KOH produces Ca(OH)₂. Ca(OH)₂ barely dissolves. The reaction has removed Ca²⁺ and OH⁻ ions from the solution.
Some of the reactions lead to neither precipitates nor gases. They will not take place since they are not energetically favored.
<h3>3</h3>
Compare the first and last row:
Both Ca(NO₃)₂ and Zn(NO₃)₂ react with KOH. However, between the two precipitates formed, Ca(OH)₂ is more soluble than Zn(OH)₂.
As a result, add the same amount of KOH to two Ca(NO₃)₂ and Zn(NO₃)₂ of equal concentration. The solution that end up with more precipitate shall belong to Zn(NO₃)₂.
<h3>4</h3>
Compare the second and third row:
Cu(NO₃)₂ reacts with KI, but Ni(NO₃)₂ does not. Thus, add equal amount of KI to the two unknowns. The solution that forms precipitate shall belong to Cu(NO₃)₂.
The segment that represents melting is time (minutes) and temperature.
Osmosis and diffusion are related processes that display similarities. Both osmosis and diffusion equalize the concentration of two solutions. Both diffusion and osmosis are passive transport processes, which means they do not require any input of extra energy to occur. In both diffusion and osmosis, particles move from an area of higher concentration to one of lower concentration. Osmosis and facilitated diffusion both account for movement of molecules from a region of high concentration to a region of low concentration.
Answer:
KNO2, KBr
Explanation:
Chemical compounds are any substance composed of identical molecules consisting of atoms of two or more chemical elements. So NO2 and KBr are compounds, Br2 and Fe are not.
<h2>In the name, iron(III) oxide, the (III) represents: D) the electrical charge of iron</h2><h2>
Explanation:</h2>
To attain stability the chemical bond is formed .
Chemical bond
It is a kind of linkage that binds one atom with the other .
The atoms do so in order to attain stable noble gas configuration .
To form chemical bond they either:
Loose electrons : when atoms loose electrons they acquire positive charge which is equal to the number of electrons lost .
Gain electrons: After gaining electrons they acquire negative charge which is equal to the number of electrons gained by an atom.
share electrons : With sharing no charges are develop .
<em>In the above asked question when iron combines with oxygen it forms iron oxide : where iron looses 3 electrons and oxygen gains 2 electrons .That is the reason ,III here represents the electrical charge of iron</em>