Answer:
Directional hypothesis is an example of a directional research hypothesis.
Explanation:
Directional hypothesis: A directional (or one tailed hypothesis) states which way you think the results are going to go, for example in an experimental study we might say…”Participants who have been deprived of sleep for 24 hours will have more cold symptoms in the following week after exposure to a virus than
Answer:
1.a) 1 kJ
1.b) 4 kJ
ratio 1:4
1.c) 4 times as before
2.a) 3.33 m/s2
Explanation:
1.a) bicycle's velocity =Displacement/time
=100/20 m/s
=5 m/s
bicycler's KE =1/2 *mass*(velocity)^2
=1/2*80*5^2
=1000 J = 1 kJ
1.b) bicycle's new velocity =200/20 m/s
=10 m/s
bicycler's new KE =1/2*80*10^2
=4000 J = 4 kJ
Ratio= KE 1 :KE new
= 1 :4
1.c) when bicycler's speed was doubled it increased the KE by 4 times (2^2). because In KE we consider the square of the speed , so the factor we increase the speed , the KE will get increased with the square value of it
ex : speed is triple the prior value , then the KE is as 3^2 times as before. that is 9 times
2.a) car acceleration = (20-0)/6 m/s2
= 3.33 m/s2
<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>
By calculating the crests, you can find the waves' frequency.
Hope this helps!