Answer:
CO2 emissions from fossil fuel burning should be minimized at all cost. The CO2 are gotten when the carbons from hydrocarbons react with air(oxygen). This gas erodes the ozone layer which makes the melting of ice caps faster due to increased amount of heat radiations on the earth. This is the only best and permanent solution to the reduction of the amount of heat rays on the earth which is a global problem.
Objects which reflects back the sunrays could also be inserted into the sea to prevent the melting of the ice caps.
A = (v - u) / t
a = acceleration
v = final velocity
u = initial velocity
t = time
45 = (v - 300) / 10
45 × 10 = v - 300
450 + 300 = v
v = 750 m/s
Hope this helps!
P.S. Let me know if you need an explanation
Answer:
8.40 m/s
Explanation:
Slope of the plot is 0.119
Slope of a plot is given by the change in y direction divided by the change in x direction
Here, the y axis represents inverse wavelength and the x axis represents frequency.
f = Frequency (Hz, assumed)
v = Phase velocity (m/s, assumed)
λ = Wavelength (m, assumed)
So, slope

Now,


The speed of sound travelling in the tube is 8.40 m/s
In most cases the temperature must increase for thermal expansion to occur. Most substances expand as temperature increases because the atoms or molecules vibrate faster as temperature increases and experience greater separation.
Answer:
29.4855 grams of chlorophyll
Explanation:
From Raoult's law
Mole fraction of solvent = vapor pressure of solution ÷ vapor pressure of solvent = 457.45 mmHg ÷ 463.57 mmHg = 0.987
Mass of solvent (diethyl ether) = 187.4 g
MW of diethyl ether (C2H5OC2H5) = 74 g/mol
Number of moles of solvent = mass/MW = 187.4/74 = 2.532 mol
Let the moles of solute (chlorophyll) be y
Total moles of solution = moles of solute + moles of solvent = (y + 2.532) mol
Mole fraction of solvent = moles of solvent/total moles of solution
0.987 = 2.532/(y + 2.532)
y + 2.532 = 2.532/0.987
y + 2.532 = 2.565
y = 2.565 - 2.532 = 0.033
Moles of solute (chlorophyll) = 0.033 mol
Mass of chlorophyll = moles of chlorophyll × MW = 0.033 × 893.5 = 29.4855 grams