Answer:
when the steam starts coming out
Explanation:
Answer:
the time comes eventually.
Explanation:
ur body just be giving up
Answer: 0.0146m
Explanation: The formula that defines the velocity of a simple harmonic motion is given as
v = ω√A² - x²
Where v = linear velocity, A = amplitude = 1.69cm = 0.0169m, x = displacement.
The maximum speed of a simple harmonic motion is derived when x = A, hence v = ωA
One half of maximum speed = speed of motion
3ωA/2 = ω√A² - x²
ω cancels out on both sides of the equation, hence we have that
A/2 = √A² - x²
(0.0169)/2 = √(0.0169² - x²)
0.00845 = √(0.0169² - x²)
By squaring both sides, we have that
0.00845² = 0.0169² - x²
x² = 0.0169² - 0.00845²
x² = 0.0002142
x = √0.0002142
x = 0.0146m
This question involves the concepts of Newton's Second Law of Motion.
The acceleration of the bowling ball will be "0.67 m/s²".
<h3>Newton's Second Law of Motion</h3>
According to Newton's Second Law of Motion, when an unbalanced force is applied on an object, it produces an acceleration in it, in the direction of the applied force. This acceleration is directly proportional to the force applied and inversely proportional to the mass of the object. Mathematically,

where,
- a = acceleration = ?
- F = Magnitude of the applied force = 6 N
- m = Mass of the ball = 9 kg
Therefore,

a = 0.67 m/s²
Learn more about Newton's Second Law of Motion here:
brainly.com/question/13447525
#SPJ1
Answer:
Therefore the escape velocity from Mar's gravity is
m/s.
Explanation:
Escape velocity: Escape velocity is a the minimum velocity that a object needs to escape from the gravitational field of massive body.

Escape velocity
G=Universal gravitational constant = 6.673×10⁻¹¹N m²/Kg²
M= mass of Mars = 6.42×10²³ kg
R = Radius of the Mars = 3.40×10³m
The escape velocity does not depend on the velocity of a object.

m/s
Therefore the escape velocity from Mar's gravity is
m/s.